A high-performance Pt-free counter electrode (CE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) film for plastic dye-sensitized solar cells (DSCs) has been developed via a facile solid-state polymerization (SSP) approach. The polymerization was simply initiated by sintering the monomer, 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT), at the temperature of 80 °C, which can be applied on the plastic substrate. The cyclic voltammetry measurements revealed that the catalytic activity of the SSP-PEDOT CE for triiodide reduction is comparable with that of the Pt CE. Under optimized conditions, the power conversion efficiency of a DSC with a N719-sensitized TiO2 photoanode and the SSP-PEDOT CE is 7.04% measured under standard 1 sun illumination (100 mW cm(-2), AM 1.5), which is very close to that of the device fabricated under the same conditions with a conventional thermally deposited Pt CE (7.35%). Furthermore, taking advantage of the compatibility of the SSP-PEDOT with the plastic substrates, a full plastic N719-sensitized TiO2 solar cell was demonstrated, and an efficiency of 4.65% was achieved, which is comparable with the performance of a plastic DSC with a sputter-deposited Pt CE (5.38%). These results demonstrated that solid-state polymerization initiated at low temperature is a facile and low-cost method of fabricating the high-performance Pt-free CEs for plastic DSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am401719eDOI Listing

Publication Analysis

Top Keywords

solid-state polymerization
12
high-performance pt-free
12
pt-free counter
8
plastic dye-sensitized
8
dye-sensitized solar
8
solar cells
8
n719-sensitized tio2
8
plastic
7
facile synthesis
4
synthesis poly34-ethylenedioxythiophene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!