Designing oxidation catalysts based on CH activation with reduced, low oxidation state species is a seeming dilemma given the proclivity for catalyst deactivation by overoxidation. This dilemma has been recognized in the Shilov system where reduced Pt(II) is used to catalyze methane functionalization. Thus, it is generally accepted that key to replacing Pt(IV) in that system with more practical oxidants is ensuring that the oxidant does not over-oxidize the reduced Pt(II) species. The "Periana-Catalytica" system, which utilizes (bpym)Pt(II)Cl2 in concentrated sulfuric acid solvent at 200 °C, is a highly stable catalyst for the selective, high yield oxy-functionalization of methane. In lieu of the over-oxidation dilemma, the high stability and observed rapid oxidation of (bpym)Pt(II)Cl2 to Pt(IV) in the absence of methane would seem to contradict the originally proposed mechanism involving CH activation by a reduced Pt(II) species. Mechanistic studies show that the originally proposed mechanism is incomplete and that while CH activation does proceed with Pt(II) there is a solution to the over-oxidation dilemma. Importantly, contrary to the accepted view to minimize Pt(II) overoxidation, these studies also show that increasing that rate could increase the rate of catalysis and catalyst stability. The mechanistic basis for this counterintuitive prediction could help to guide the design of new catalysts for alkane oxidation that operate by CH activation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja404895zDOI Listing

Publication Analysis

Top Keywords

reduced ptii
12
mechanistic studies
8
"periana-catalytica" system
8
activation reduced
8
ptii species
8
over-oxidation dilemma
8
originally proposed
8
proposed mechanism
8
oxidation
6
reduced
5

Similar Publications

Improving the Blue Color Purity of Tetradentate Pt(II) Complexes with the Assistance of F⋅⋅⋅H Interaction towards High-Performance Blue Phosphorescent OLEDs with EQE over 33 .

Angew Chem Int Ed Engl

December 2024

Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Among the various challenges in the field of organic light-emitting diodes (OLEDs), simultaneously achieving high efficiency, a long lifespan, and a narrow full-width at half maximum (FWHM) in blue OLEDs remains a significant hurdle. Herein, we demonstrate a strategy to improve the color purity of tetradentate Pt(II) complexes with the assistance of ⋅⋅⋅H interaction by incorporating trifluoromethyl (-CF) groups into the well-known blue tetradentate Pt(II) phosphorescent complex. The results show that the different substitution positions of -CF have significantly varying effects on the FWHM values of the complexes; specifically, introducing -CF on the benzene ring of carbazole effectively reduces the FWHM, while introducing it on the benzene ring linked to the carbene unit has a minimal impact.

View Article and Find Full Text PDF

Current synthetic methods towards Pt(II) lantern-shaped cages involve the use of dry solvent, inert atmosphere, lengthy reaction times, and highly variable yields if isolated. Starting materials such as [Pt(CHCN)](BF) suffer from a poor shelf-life, reducing the synthetic accessibility of various Pt(II) architectures. A new Pt(II) source (with varied counterions), [Pt(3-ClPy)](X) (3-ClPy=3-chloropyridine, X=BF , OTf, NO ), is developed and characterised, showing greatly enhanced shelf-life characteristics under ambient atmospheric conditions.

View Article and Find Full Text PDF

Theoretical investigation on the surrounding effects of second-order nonlinear properties for (N^C^N)Pt(II)Cl complexes.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing 100083, China. Electronic address:

Pt(II) complexes are widely used as nonlinear optical (NLO) materials. The geometric and electronic structures, second-order NLO property and UV-Vis absorption spectra of (N^C^N)Pt(II)Cl complexes (1-4) N^C^N binding by central benzene and two lateral N-heterocycles) are evaluated by density functional theory (DFT) and time-dependent DFT calculations. The detailed environmental effect of total first hyperpolarizability (β) in the solution and crystal phases is simulated by polarized continuum model (PCM) and quantum mechanics/molecular mechanics (QM/MM) method, respectively.

View Article and Find Full Text PDF

Hollow Copper Sulfide Nanocubes Loaded with Pt(IV) Complexes for Cancer Multimodal Therapy.

Langmuir

October 2024

State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.

Chemotherapy (CT) can significantly inhibit tumor growth, metastasis, and recurrence during cancer therapy. People have widely used platinum drugs in cancer treatment. However, as most chemotherapeutic drugs, platinum drugs still have shortcomings such as poor solubility, low cell uptake, nonspecific distribution, multidrug resistance, and adverse side effects.

View Article and Find Full Text PDF

The development of multi-functional Pt(IV) complexes as chemotherapeutic agents has gained growing attention in medical oncology. However, the design of multi-functional tumor-targeted Pt(IV) complexes with high hydrolytic stability remains challenging. Herein, we have developed a Pt(IV) prodrug conjugated with vorinostat as a multi-functional cancer therapeutic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!