Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered (up to 30 Gy). GafchromicTM EBT2 and EBT3 films may be considered the dosimeter of choice, and the authors here provide some additional data about uniformity correction for this new generation of radiochromic films.
Methods: A new analysis method using blue channel for marker dye correction was proposed for uniformity correction both for EBT2 and EBT3 films. Symmetry, flatness, and field-width of a reference field were analyzed to provide an evaluation in a high-spatial resolution of the film uniformity for EBT3. Absolute doses were compared with thermoluminescent dosimeters (TLD) as baseline. VMAT plans with multiple noncoplanar arcs were generated with a treatment planning system on a selected pool of eleven patients with cranial lesions and then recalculated on a water-equivalent plastic phantom by Monte Carlo algorithm for patient-specific QA. 2D quantitative dose comparison parameters were calculated, for the computed and measured dose distributions, and tested for statistically significant differences.
Results: Sensitometric curves showed a different behavior above dose of 5 Gy for EBT2 and EBT3 films; with the use of inhouse marker-dye correction method, the authors obtained values of 2.5% for flatness, 1.5% of symmetry, and a field width of 4.8 cm for a 5×5 cm2 reference field. Compared with TLD and selecting a 5% dose tolerance, the percentage of points with ICRU index below 1 was 100% for EBT2 and 83% for EBT3. Patients analysis revealed statistically significant differences (p<0.05) between EBT2 and EBT3 in the percentage of points with gamma values<1 (p=0.009 and p=0.016); the percent difference as well as the mean difference between calculated and measured isodoses (20% and 80%) were found not to be significant (p=0.074, p=0.185, and p=0.57).
Conclusions: Excellent performances in terms of dose homogeneity were obtained using a new blue channel method for marker-dye correction on both EBT2 and EBT3 GafchromicTM films. In comparison with TLD, the passing rates for the EBT2 film were higher than for EBT3; a good agreement with estimated data by Monte Carlo algorithm was found for both films, with some statistically significant differences again in favor of EBT2. These results suggest that the use of GafchromicTM EBT2 and EBT3 films is appropriate for dose verification measurements in VMAT stereotactic radiosurgery; taking into account the uncertainty associated with Gafchromic film dosimetry, the use of adequate action levels is strongly advised, in particular, for EBT3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4816300 | DOI Listing |
Sci Rep
November 2024
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.
View Article and Find Full Text PDFPhys Med Biol
May 2021
Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.
Passive dosimetry with radiochromic films is widely used in proton radiotherapy, both in clinical and scientific environments, thanks to its simplicity, high spatial resolution and dose-rate independence. However, film under-response for low-energy protons, the so-called linear-energy transfer (LET) quenching, must be accounted and corrected for. We perform a meta-analysis on existing film under-response data with EBT, EBT2 and EBT3 GAFchromic™ films and provide a common framework to integrate it, based on the calculation of dose-averaged LET in the active layer of the films.
View Article and Find Full Text PDFRadiol Oncol
August 2020
National Institute of Oncology, Centre of Radiotherapy, Budapest, Hungary.
Introduction The purpose of the study was to compare the results of gamma value based film analysis according to the used type of self-developer film and software product. Material and methods The films were irradiated with different treatment techniques such as 3D conformal and intensity modulated radiotherapy with static and rotational delivery. Stereotactic plans with conformal and intensity modulated arc techniques, using coplanar and non-coplanar beam setup were also evaluated.
View Article and Find Full Text PDFRadiol Phys Technol
September 2020
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400094, India.
In the present study, beam quality correction, [Formula: see text], and phantom scatter correction, k(r), for low-energy brachytherapy sources, Cs, I, and Pd, are calculated using the Monte Carlo-based EGSnrc code system as a function of the distance along the transverse axis of the source. The solid-state detectors investigated are diamond, LiF, LiBO, AlO, and radiochromic films, such as HS, EBT, EBT2, EBT3, RTQA, XRT, and XRQA. The solid phantoms investigated are polystyrene, PMMA, virtual water, solid water, plastic water (LR), A150, RW1, RW3, and WE210.
View Article and Find Full Text PDFRep Pract Oncol Radiother
June 2019
Medical Physics Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
Aim: Blood irradiators (BI) initial acceptance testing and routine annual dosimetry checks require radiation dose measurements in order to comply with regulatory requirements.
Background: Traditionally thermo-luminescence dosimeters (TLD) have been used to measure the dose. The EBT3 film is reported to be a better dosimeter for low energy X-rays than its predecessors EBT2 and EBT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!