Structural modification of bovine milk β-lactoglobulin (β-LG) in aqueous 1-butyl-3-methylimidazolium nitrate ([bmim][NO3]) and ethylammonium nitrate ([EAN][NO3]) solutions has been investigated by Fourier transform infrared and circular dichroism spectroscopy. Remarkably, high ionic liquid (IL) concentrations (>15 mol %IL) caused formation of a non-native α-helical structure of β-LG and disruption of its tertiary structure. Furthermore, while [bmim][NO3] promoted protein aggregation, [EAN][NO3] inhibited it probably owing to differences in the unique solution structure (nanoheterogeneity) of the ILs by the different cationic species. The IL-induced α-helical formation of β-LG shows a behavior similar to the alcohol denaturation, but a disordered structure-rich state was observed in the β-α transition process by adding IL, in contrast to the case of an aqueous alcohol solution of protein. We propose that the molten salt-like property of aqueous IL solutions strongly support α-helical formation of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp405834n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!