The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733716 | PMC |
http://dx.doi.org/10.4137/CMO.S12268 | DOI Listing |
Curr Issues Mol Biol
January 2025
Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia.
This study aimed to evaluate the effects of autologous dendritic cell (DC) immunotherapy on clinical outcomes (glomerular filtration rate/GFR and urine creatinine albumin ratio/UACR) and endothelial dysfunction (ICAM, VCAM, VEGF) in patients with diabetic kidney disease (DKD). Endothelial dysfunction induced by inflammation is one of the key factors in the pathogenesis of DKD. In this one-group pretest-posttest quasi-experimental study, 69 subjects with DKD were administered a single dose of autologous DC immunotherapy ex vivo.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium.
Cell therapies, including tumor antigen-loaded dendritic cells used as therapeutic cancer vaccines, offer treatment options for patients with malignancies. We evaluated the feasibility, safety, immunogenicity, and clinical activity of adjuvant vaccination with Wilms' tumor protein (WT1) mRNA-electroporated autologous dendritic cells (WT1-mRNA/DC) in a single-arm phase I/II clinical study of patients with advanced solid tumors receiving standard therapy. Disease status and immune reactivity were evaluated after 8 weeks and 6 months.
View Article and Find Full Text PDFElife
January 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
de Duve Institute, Université catholique de Louvain, Brussels, Belgium. Electronic address:
Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells.
View Article and Find Full Text PDFACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!