Background: Escherichia coli sequence type 131 (ST131), typically fluoroquinolone-resistant (FQ-R) and/or extended-spectrum β-lactamase (ESBL)-producing, has emerged globally. We assessed its prevalence and characteristics among US veterans.

Methods: In 2011, 595 de-identified E. coli clinical isolates were collected systematically within 3 resistance groups (FQ-susceptible [FQ-S], FQ-R, and ESBL-producing) from 24 nationally distributed Veterans Affairs Medical Centers (VAMCs). ST131 and its H30 subclone were detected by polymerase chain reaction and compared with other E. coli for molecular traits, source, and resistance profiles.

Results: ST131 accounted for 78% (184/236) of FQ-R and 64.2% (79/123) of ESBL-producing isolates, but only 7.2% (17/236) of FQ-S isolates (P < .001). The H30 subclone accounted for ≥95% of FQ-R and ESBL-producing, but only 12.5% of FQ-S, ST131 isolates (P < .001). By back-calculation, 28% of VAMC E. coli isolates nationally represented ST131. Overall, ST131 varied minimally in prevalence by specimen type, inpatient/outpatient source, or locale; was the most prevalent ST, followed distantly by ST95 and ST12 (13% each); and accounted for ≥40% (β-lactams), >50% (trimethoprim-sulfamethoxazole , multidrug), or >70% (ciprofloxacin, gentamicin) of total antimicrobial resistance. FQ-R and ESBL-producing ST131 isolates had higher virulence scores than corresponding non-ST131 isolates. ST131 pulsotypes overlapped extensively among VAMCs.

Conclusions: Among US veterans, ST131, primarily its H30 subclone, accounts for most antimicrobial-resistant E. coli and is the dominant E. coli strain overall. Possible contributors include multidrug resistance, extensive virulence gene content, and ongoing transmission. Focused attention to ST131, especially its H30 subclone, could reduce infection-related morbidity, mortality, and costs among veterans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792724PMC
http://dx.doi.org/10.1093/cid/cit503DOI Listing

Publication Analysis

Top Keywords

h30 subclone
16
fq-r esbl-producing
12
st131 h30
12
st131
11
escherichia coli
8
coli sequence
8
sequence type
8
type 131
8
131 st131
8
isolates 001
8

Similar Publications

Unlabelled: The prevalence of infections caused by extended-spectrum beta-lactamase (ESBL)-producing (ESBL-EC) and carbapenemase-producing (CP-EC) is increasing worldwide. We investigated the epidemiology of ESBL-EC and CP-EC causing hospital-acquired (HA) infections in a large teaching hospital in Tunisia over the last two decades and compared it with a collection of 107 community-acquired (CA) ESBL-EC isolates. Between 2001 and 2019, the incidence of HA ESBL-EC increased significantly from 0.

View Article and Find Full Text PDF

Background: Antibiotic prescription practices differ between countries, influencing regional antimicrobial resistance prevalence. However, comparisons of clonal diversity among resistant bacteria in countries with different prescribing practices are rare. The rise of fluoroquinolone-resistant (FQREC), often multidrug-resistant, exacerbates global antibiotic resistance.

View Article and Find Full Text PDF

Background: Community-acquired UTI is the most common bacterial infection managed in general medical practice that can lead to life-threatening outcomes. While UTIs are primarily caused by colonizing the patient's gut, it is unclear whether the gut resident profiles can predict the person's risks for UTI and optimal antimicrobial treatments. Thus, we conducted an eighteen-month long community-based observational study of fecal colonization and UTI in women aged 50 years and above.

View Article and Find Full Text PDF

Objectives: To assess the microbiological characteristics of Escherichia coli causing healthcare-associated bacteraemia of urinary origin (HCA-BUO) in Spain (ITUBRAS-2 project), with particular focus on ESBL producers and isolates belonging to ST131 high-risk clone (HiRC). Clinical characteristics and outcomes associated with ST131 infection were investigated.

Methods: A total of 222 E.

View Article and Find Full Text PDF

Objective: Escherichia coli ST131 is a pandemic clone associated with multidrug resistance, starting with beta-lactamase production and fluoroquinolone resistance in the first place, leading to significant systemic infections. Clones that develop due to the frequency of antimicrobial resistance and the rate of spread in our country are important issues that need to be investigated. This study aims to investigate the incidence of ST131which is a "high-risk pandemic clone E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!