Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pct110DOI Listing

Publication Analysis

Top Keywords

petal colors
8
f3'h gene
8
anthocyanins derived
8
delphinidin-based anthocyanins
8
chrysanthemum flower
8
f3'5'h genes
8
delphinidin
6
violet/blue chrysanthemums--metabolic
4
chrysanthemums--metabolic engineering
4
engineering anthocyanin
4

Similar Publications

is an important landscape tree species whose flower color has high ornamental value. However, the molecular mechanisms regulating flower color in remain unclear. By studying the metabolomics and transcriptomics of three different color varieties under the species lineage of , 'Eigeng' (EG, white), 'Albo-rosea' (AR, pink), and 'Grandiflora' (GF, green), the biosynthetic mechanisms of different flower colors in were revealed.

View Article and Find Full Text PDF

(CM), renowned for its diverse and vibrant varieties, holds significant ornamental and medicinal value. Despite this, the core regulatory mechanisms underlying its coloration, especially in non-petal tissues (i.e.

View Article and Find Full Text PDF

Azaleas (Rhododendron simsii) are popular ornamental woody plants known for their bright colors; however, very limited studies have been reported on the process of flower petal pigmentation. In this study, we found significant differences in the anthocyanin contents of petals from different colored azaleas, and the results of quantitative real-time PCR indicated that the R2R3 MYB genes, RsMYB12, RsMYB90, and RsMYB123, showed significant expression changes during the petal coloration in azalea petals; therefore, we hypothesized that RsMYB12, RsMYB90, and RsMYB123 might involve in the coloring process of azalea petals by regulating anthocyanin synthesis. This work provides insights into the underlying mechanisms of petal pigmentation in R.

View Article and Find Full Text PDF

Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.

View Article and Find Full Text PDF

Rapeseed (Brassica napus L.) possesses substantial economic value as an oil, vegetable, and forage crop, while also exhibiting notable ornamental characteristics. Recent advances in flower colour breeding have significantly enhanced the visual appeal of rapeseed, with anthocyanins identified as the primary contributor to the development of red, purple, and pink flowers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!