Acetylcholine enhances excitability by lowering the threshold of spike generation in olfactory receptor cells.

J Neurophysiol

Department of Physiology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan.

Published: November 2013

AI Article Synopsis

  • Olfactory perception is affected by behavior, with acetylcholine playing a key role in how newt olfactory receptor cells (ORCs) encode signals.
  • Application of carbachol, a drug that mimics acetylcholine, increases the firing rate and lowers the spike threshold in ORCs, demonstrating its impact on their excitability.
  • Carbachol enhances voltage-gated sodium and T-type calcium currents through muscarinic receptors, suggesting that acetylcholine makes it easier for ORCs to generate spikes by lowering the threshold for firing.

Article Abstract

Olfactory perception is influenced by behavioral states, presumably via efferent regulation. Using the whole cell version of patch-clamp recording technique, we discovered that acetylcholine, which is released from efferent fibers in the olfactory mucosa, can directly affect the signal encoding in newt olfactory receptor cells (ORCs). Under current-clamp conditions, application of carbachol, an acetylcholine receptor agonist, increased the spike frequency of ORCs and lowered their spike threshold. When a 3-pA current to induce near-threshold depolarization was injected into ORCs, 0.0 spikes/s were generated in control solution and 0.5 spikes/s in the presence of carbachol. By strong stimuli of injection of a 13-pA current into ORCs, 9.1 and 11.0 spikes/s were generated in control and carbachol solutions, respectively. A similar result was observed by bath application of 50 μM acetylcholine. Under voltage-clamp conditions, carbachol increased the peak amplitude of a voltage-gated sodium current by 32% and T-type calcium current by 39%. Atropine, the specific muscarinic receptor antagonist, blocked the enhancement by carbachol of the voltage-gated sodium current and T-type calcium current, suggesting that carbachol increases those currents via the muscarinic receptor rather than via the nicotinic receptor. In contrast, carbachol did not significantly change the amplitude of the L-type calcium current or the delayed rectifier potassium current in the ORCs. Because T-type calcium current is known to lower the threshold in ORCs, we suggest that acetylcholine enhance excitability by lowering the threshold of spike generation in ORCs via the muscarinic receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01077.2012DOI Listing

Publication Analysis

Top Keywords

calcium current
16
t-type calcium
12
muscarinic receptor
12
current
9
excitability lowering
8
lowering threshold
8
threshold spike
8
spike generation
8
olfactory receptor
8
receptor cells
8

Similar Publications

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

[Parenteral nutrition in neonatology and pediatrics: physicochemical stability, risks and precautions. Narrative review].

Andes Pediatr

October 2024

Departamento de Gastroenterología y Nutrición Pediátrica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Parenteral nutrition is a high-risk therapy due to some of its components and the exceptional inclusion of drugs. It can contain more than 50 nutrients, with different characteristics of osmolarity, ionic charge, and pH, which can affect its physicochemical stability. In addition, environmental conditions such as light, temperature, and oxygen must be considered.

View Article and Find Full Text PDF

Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.

View Article and Find Full Text PDF

Calcium channels as therapeutic targets in head and neck squamous cell carcinoma: current evidence and clinical trials.

Front Oncol

December 2024

Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China.

Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is marked by high rates of recurrence and metastasis. Calcium signaling is associated with the progression of HNSCC and the development of drug resistance. Changes in calcium ion flow can trigger severe pathophysiological processes, including malignant transformation, tumor proliferation, epithelial-mesenchymal transition, and apoptosis evasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!