Glycerol synthesis in freeze-resistant rainbow smelt: towards the characterization of a key enzyme glycerol-3-phosphatase.

Fish Physiol Biochem

Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada,

Published: February 2014

AI Article Synopsis

  • Rainbow smelt produce high levels of glycerol in winter as a cryoprotectant, facilitated by an enzyme called glycerol-3-phosphatase (G3Pase).
  • This study focuses on the purification and characterization of G3Pase from smelt liver, which is crucial for understanding how these fish adapt biochemically to cold temperatures.
  • Initial findings suggest that smelt G3Pase is a low molecular weight, Mg⁺-dependent enzyme located in the cytosol, and its optimal pH and K(m) values have been partially determined.

Article Abstract

Rainbow smelt (Osmerus mordax) synthesize high amounts of glycerol in winter as a cryoprotectant through the direct dephosphorylation of glycerol-3-phosphate by a phosphatase, glycerol-3-phosphatase (G3Pase). Such a protein is well described in a few species including fungi, bacteria and plants but never studied beyond tissue homogenates in any animal species. Purification, identification and characterization of this enzyme is thus crucial for a better comprehension of the biochemical adaptation in rainbow smelt in response to low temperature and more generally of the biochemical mechanisms involved in glycerol synthesis in animals. This work presents the first attempt to purify G3Pase from smelt liver, the main site of glycerol synthesis for the whole animal. A partial purification was performed, and some characteristics of the protein determined, including optimal pH, K(m) and cation requirements. Smelt G3Pase is most likely a low molecular weight, Mg⁺-dependent and cytosolic phosphatase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-013-9841-3DOI Listing

Publication Analysis

Top Keywords

glycerol synthesis
12
rainbow smelt
12
smelt
5
glycerol
4
synthesis freeze-resistant
4
freeze-resistant rainbow
4
smelt characterization
4
characterization key
4
key enzyme
4
enzyme glycerol-3-phosphatase
4

Similar Publications

Prolonged storage reduces viability of and core intestinal bacteria in fecal microbiota transplantation preparations for dogs.

Front Microbiol

January 2025

Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States.

Introduction: Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess () viability through culture to further characterize bacterial viability in different protocols for FMT preparations.

View Article and Find Full Text PDF

Aim: To investigate fasting metabolism in children with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and medium-chain acyl-CoA dehydrogenase deficiency (MCADD) using microdialysis technique.

Methods: Twelve patients (7 with VLCADD, 5 with MCADD, mean age 4.9 years, 10/12 diagnosed via newborn screening) were recruited for investigation in connection to clinical fasting examinations at the Karolinska University Hospital (between 2015 and 2024).

View Article and Find Full Text PDF

Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.

View Article and Find Full Text PDF

Exploring the causal role of plasma metabolites and metabolite ratios in prostate cancer: a two-sample Mendelian randomization study.

Front Mol Biosci

January 2025

Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.

Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.

Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!