In the present study, we investigated the mercury distribution, mercury bioaccumulation, and oxidative parameters in the Neotropical fish Hoplias malabaricus after trophic exposure. Forty-three individuals were distributed into three groups (two exposed and one control) and trophically exposed to fourteen doses of methylmercury each 5 days, totalizing the doses of 1.05 μg g⁻¹ (M1.05) and 10.5 μg g⁻¹ (M10.5 group). Autometallography technique revealed the presence of mercury in the intestinal epithelia, hepatocytes, and renal tubule cells. Mercury distribution was dose-dependent in the three organs: intestine, liver, and kidney. Reduced glutathione concentration, glutathione peroxidase, catalase, and glutathione S-transferase significantly decreased in the liver of M1.05, but glutathione reductase increased and lipid peroxidation levels were not altered. In the M10.5, most biomarkers were not altered; only catalase activity decreased. Hepatic and muscle mercury bioaccumulation was dose-dependent, but was not influenced by fish sex. The mercury localization and bioaccumulation corroborates some histopathological findings in this fish species (previously verified by Mela et al. in Ecotoxicol Environ Saf 68:426-435, 2007). However, the results of redox biomarkers did not explain histopathological findings previously reported in M10.5. Thus, fish accommodation to the stressor may reestablish antioxidant status at the highest dose, but not avoid cell injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-013-9840-4 | DOI Listing |
Environ Pollut
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China.
Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.
View Article and Find Full Text PDFPeerJ
January 2025
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. Electronic address:
The source-receptor relationship of atmospheric mercury is a critical environmental concern. However, comprehensive evaluations of mercury pollution based on spatially resolved and time-averaged data have not yet been conducted in Korea. In this study, the spatio-temporal variations of total gaseous mercury (TGM) and mercury isotopes were examined using passive air samplers at 30 sites in Ulsan over one year.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.
The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!