Three magnesium based carboxylate framework systems were prepared through a temperature-dependent synthesis. The compounds were synthesized by a hydrothermal method and characterized by single crystal X-ray diffraction analysis. A stepwise increase in the temperature of the medium resulted a stepwise increase in the dimensionality of the network, ultimately leading to the formation of a new 2D layered alkaline earth metal-organic framework (MOF) compound, {[Mg2(HL)2(H2O)4]·H2O}n (1) (H3L = pyrazole-3,5-dicarboxylate). Compound 1 selectively adsorbs hydrogen (H2) (ca. 0.56 wt% at 77 K) over nitrogen at 1 atm and demonstrates a strong blue fluorescent emission band at 480 nm (λ(max)) upon excitation at 270 nm. Notably, the 2D framework compound efficiently catalyzes the aldol condensation reactions of various aromatic aldehydes with ketones in a heterogeneous medium under environmentally friendly conditions. The catalyst can be recycled and reused several times without any significant loss of activity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt51509eDOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
stepwise increase
8
magnesium-based multifunctional
4
multifunctional metal-organic
4
framework
4
framework synthesis
4
synthesis thermally
4
thermally induced
4
induced structural
4
structural variation
4

Similar Publications

The ultrahigh-sensitive detection of HS is reported using a novel dual-ligand metal-organic framework (MOF) electrochemiluminescence (ECL) sensor. By combining tetrakis(4-carboxyphenyl) porphyrin (TCPP) and 1,3,6,8-tetrakis(4-carboxyphenyl) pyrene (TBAPy) as ligands and employing zirconium as the metal source, a spindle-shaped Zr-PyTCPPMOF was successfully designed and synthesized. Notably, the multiple nitrogen structures of porphyrin provided abundant binding sites for sulfur (S), further enhancing the ECL signal of Zr-PyTCPPMOF.

View Article and Find Full Text PDF

Highly sensitive electrochemical sensor for lead ions based on Bi-MOF/conducting polymer composites.

Chemosphere

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:

Herein, conductive polyaniline (PANI) was chemically polymerized on the surface of a bismuth-based metal-organic framework (Bi-MOF) to form conductive PANI@Bi-MOF composites. FT-IR and PXRD measurements verified the successful production of PANI@Bi-MOF, whereas SEM, TEM, and EDAX mapping demonstrated that PANI was uniformly coated on the surface of Bi-MOF. The resulting PANI@Bi-MOF composites were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS), then used to develop a sensitive electrochemical sensor for the detection of lead ions based on differential pulse anodic stripping voltammetry (DPASV).

View Article and Find Full Text PDF

Light-Directed Self-Powered Metal-Organic Framework Based Nanorobots for Deep Tumor Penetration.

Adv Mater

December 2024

Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Effective intratumoral distribution of anticancer agents with good tumor penetration is of great practical importance for oncotherapy. How to break the limitation of traditional passive drug delivery relying on blood circulatory system into solid tumors remains a challenge. Herein, a light-directed self-powered nanorobot based on zirconium-based porphyrin metal-organic framework (MOF) is reported for smart delivery of chemodrug and photosensitizer for deep tumor penetration.

View Article and Find Full Text PDF

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CHNH]Co(HCOO).

Small

December 2024

Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.

View Article and Find Full Text PDF

MOF-Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables.

Small

December 2024

School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China.

Green and efficient total antioxidant capacity (TAC) detection is significant for healthy diet and disease prevention. This work first proposed the concept of TAC colorimetric detection based on microrobots. A novel metal-organic framework (MOF)-based biomimetic enzyme microrobot (MIL-88A@FeO) is developed that can efficiently and accurately detect the TAC of real fruits and vegetables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!