A comprehensive experimental study was conducted on the dealloying of PdNi6 nanoparticles under various conditions. A two-stage dealloying protocol was developed to leach >95% of Ni while minimizing the dissolution of Pd. The final structure of the dealloyed particle was strongly dependent on the acid used and temperature. When H2SO4 and HNO3 solutions were used in the first stage of dealloying, solid and porous particles were generated, respectively. The porous particles have a 3-fold higher electrochemical surface area per Pd mass than the solid ones. The dealloyed PdNi6 nanoparticles were then used as a core material for the synthesis of core-shell catalysts. These catalysts were synthesized in gram-size batches and involved Pt displacement of an underpotentially deposited (UPD) Cu monolayer. The resulting materials were characterized by scanning transmission electron microscopy (STEM) and in situ X-ray diffraction (XRD). The oxygen reduction reaction (ORR) activity of the core-shell catalysts is 7-fold higher than the state-of-the-art Pt/C. The high activity was confirmed by a more than 40 mV improvement in fuel cell performance with a Pt loading of 0.1 mg cm(-2) by using the core-shell catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp52252kDOI Listing

Publication Analysis

Top Keywords

core-shell catalysts
16
oxygen reduction
8
reduction reaction
8
pdni6 nanoparticles
8
porous particles
8
core-shell
4
catalysts consisting
4
consisting nanoporous
4
nanoporous cores
4
cores oxygen
4

Similar Publications

Fischer-Tropsch synthesis (FTS) in a 3D-printed stainless steel (SS) microchannel microreactor was investigated using Fe@SiO catalysts. The catalysts were prepared by two different techniques: one pot (OP) and autoclave (AC). The mesoporous structure of the two catalysts, Fe@SiO (OP) and Fe@SiO (AC), ensured a large contact area between the reactants and the catalyst.

View Article and Find Full Text PDF

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

Design of an efficient magnetic brush solid acid and its catalytic use in organic reactions.

Sci Rep

January 2025

Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.

In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.

View Article and Find Full Text PDF

Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.

View Article and Find Full Text PDF

New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity.

Int J Biol Macromol

January 2025

Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!