Keratoconus: a biomechanical perspective on loss of corneal stiffness.

Indian J Ophthalmol

Department of Imaging, Biomechanics and Mathematical Modeling Solutions, Narayana Nethralaya, Bangalore, Karnataka, India.

Published: August 2013

Keratoconus (KC) is progressive disease of corneal thinning, steepening and collagen degradation. Biomechanics of the cornea is maintained by the intricate collagen network, which is responsible for its unique shape and function. With the disruption of this collagen network, the cornea loses its shape and function, resulting in progressive visual degradation. While KC is essentially a stromal disease, there is evidence that the epithelium undergoes significant thinning similar to the stroma. Several topographical approaches have been developed to detect KC early. However, it is now hypothesized that biomechanical destabilization of the cornea may precede topographic evidence of KC. Biomechanics of KC has been investigated only to a limited extent due to lack of in vivo measurement techniques and/or devices. In this review, we focus on recent work performed to characterize the biomechanical characteristics of KC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775071PMC
http://dx.doi.org/10.4103/0301-4738.116057DOI Listing

Publication Analysis

Top Keywords

collagen network
8
shape function
8
keratoconus biomechanical
4
biomechanical perspective
4
perspective loss
4
loss corneal
4
corneal stiffness
4
stiffness keratoconus
4
keratoconus progressive
4
progressive disease
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications.

Adv Colloid Interface Sci

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.

View Article and Find Full Text PDF

Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.

View Article and Find Full Text PDF

This study attempted to explore the molecular mechanism of Epimedium herb (EH) on rheumatoid arthritis (RA) treatment. We employed network pharmacology, molecular docking, and HPLC analysis to investigate the molecular mechanisms underlying the efficacy of EH in treating RA. To assess the efficacy of EH intervention, RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) mouse models were utilized.

View Article and Find Full Text PDF

Radiation therapy (RT) is widely used for cancer treatment but is found with side effects of radiation dermatitis and fibrosis thereby calling for timely assessment. Nevertheless, current clinical assessment methods are found to be subjective, prone to bias, and accompanied by variability. There is, therefore, an unmet clinical need to explore a new assessment technique, ideally portable and affordable, making it accessible to less developed regions too.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!