A socio-technical model to explore urban water systems scenarios.

Water Sci Technol

Department of Civil Engineering, Monash University, Victoria, Australia.

Published: October 2013

This article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity. The urban water system is parameterised with vectors of the relative influence of each servicing solution. The model is a software implementation of the Multi-Pattern Approach, a theory on societal systems, like urban water systems, and how these develop and go through transitions under various internal and external conditions. Acknowledging that social dynamics comes with severe and non-reducible uncertainties, the model is set up to be exploratory, meaning that for any initial condition several possible future scenarios are produced. This article gives a concise overview of the necessary theoretical background, the model architecture and some initial test results using a drainage example.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2013.299DOI Listing

Publication Analysis

Top Keywords

urban water
28
socio-technical model
16
water systems
16
water
8
urban
7
model
6
systems
5
socio-technical
4
model explore
4
explore urban
4

Similar Publications

The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

Core-shell In/H-Beta@Ce catalyst with enhanced sulfur and water tolerance for selective catalytic reduction of NO by CH.

J Hazard Mater

January 2025

State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China. Electronic address:

A series of core-shell In/H-Beta@Ce catalysts were synthesized by encapsulating In/H-Beta within an amorphous CeO shell and then evaluated for the selective catalytic reduction of NO by CH (CH-SCR) under challenging conditions with SO and HO. IB@Ce-2 achieved 57.7 % NO conversion at 625°C, representing a 23.

View Article and Find Full Text PDF

Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.

View Article and Find Full Text PDF

This study examines the presence of potentially toxic elements (PTEs) in the surface sediments and water of the Ashtamudi wetland, a Ramsar site on India's southwest coast. The average concentration of PTEs in water(μg/L) and in sediments (mg/kg) follows the order Fe(147.89) > Zn(107.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!