Autism spectrum disorder (ASD) is a neurological disorder in which a significant number of children experience a developmental regression characterized by a loss of previously-acquired skills and abilities. Loss of neurological function in ASD, as observed in affected children who have regressed, can be explained as neurodegeneration. Although there is research evidence of neurodegeneration or progressive encephalopathy in ASD, the issue of neurodegeneration in ASD is still under debate. Evidence of neurodegeneration in the brain in ASD includes: (1) neuronal cell loss, (2) activated microglia and astrocytes, (3) proinflammatory cytokines, (4) oxidative stress, and (5) elevated 8-oxo-guanosine levels. The evidence from this review suggests that neurodegeneration underlies the loss of neurological function in children with ASD who have experienced regression and loss of previously acquired skills and abilities, and that research into treatments to address the issue of neurodegeneration in ASD are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751488PMC
http://dx.doi.org/10.1186/2047-9158-2-17DOI Listing

Publication Analysis

Top Keywords

evidence neurodegeneration
12
autism spectrum
8
spectrum disorder
8
skills abilities
8
loss neurological
8
neurological function
8
issue neurodegeneration
8
neurodegeneration asd
8
asd
7
neurodegeneration
6

Similar Publications

Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.

View Article and Find Full Text PDF

Reshaping computational neuropsychiatry beyond synaptopathy.

Brain

January 2025

Department of Child and Adolescent Psychopathology, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France.

Computational neuropsychiatry is a leading discipline to explain psychopathology in terms of neuronal message passing, distributed processing, and belief propagation in neuronal networks. Active Inference (AI) has been one of the ways of representing this dysfunctional signal processing. It involves that all neuronal processing and action selection can be explained by maximizing Bayesian model evidence, or minimizing variational free energy.

View Article and Find Full Text PDF

Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.

View Article and Find Full Text PDF

Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.

There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.

View Article and Find Full Text PDF

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!