In vitro and in vivo studies implicate occludin in the regulation of paracellular macromolecular flux at steady state and in response to tumor necrosis factor (TNF). To define the roles of occludin in these processes, we established intestinal epithelia with stable occludin knockdown. Knockdown monolayers had markedly enhanced tight junction permeability to large molecules that could be modeled by size-selective channels with radii of ~62.5 Å. TNF increased paracellular flux of large molecules in occludin-sufficient, but not occludin-deficient, monolayers. Complementation using full-length or C-terminal coiled-coil occludin/ELL domain (OCEL)-deficient enhanced green fluorescent protein (EGFP)-occludin showed that TNF-induced occludin endocytosis and barrier regulation both required the OCEL domain. Either TNF treatment or OCEL deletion accelerated EGFP-occludin fluorescence recovery after photobleaching, but TNF treatment did not affect behavior of EGFP-occludin(ΔOCEL). Further, the free OCEL domain prevented TNF-induced acceleration of occludin fluorescence recovery, occludin endocytosis, and barrier loss. OCEL mutated within a recently proposed ZO-1-binding domain (K433) could not inhibit TNF effects, but OCEL mutated within the ZO-1 SH3-GuK-binding region (K485/K488) remained functional. We conclude that OCEL-mediated occludin interactions are essential for limiting paracellular macromolecular flux. Moreover, our data implicate interactions mediated by the OCEL K433 region as an effector of TNF-induced barrier regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784380 | PMC |
http://dx.doi.org/10.1091/mbc.E12-09-0688 | DOI Listing |
Int J Biol Macromol
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada. Electronic address:
The escalating atmospheric CO₂ concentration urgently demands ecologically friendly mitigation strategies. Compared to alternative catalysts, carbonic anhydrase (CA) demonstrates exceptionally high catalytic efficiency in CO₂ hydration reactions. Nevertheless, traditional CA immobilization techniques exhibit peak enzymatic activity exclusively at optimal temperatures, consequently constraining their effective application across diverse environmental thermal conditions in industrial settings.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Physics, Engineering & Technology, University of York, Heslington, York YO10 5DD, United Kingdom.
Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.
View Article and Find Full Text PDFbioRxiv
November 2024
Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA.
Viral pathogens, like SARS-CoV-2, hijack the host's macromolecular production machinery, imposing an energetic burden that is distributed across cellular metabolism. To explore the dynamic metabolic tension between the host's survival and viral replication, we developed a computational framework that uses genome-scale models to perform dynamic Flux Balance Analysis of human cell metabolism during virus infections. Relative to previous models, our framework addresses the physiology of viral infections of non-proliferating host cells through two new features.
View Article and Find Full Text PDFSmall Methods
November 2024
Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA.
Integrating biocidal nanoparticles (NPs) into polyamide (PA) membranes shows promise for enhancing resistance to biofouling. Incorporating techniques can tailor thin-film nanocomposite (TFN) membranes for specific water purification applications. In this study, silver-based metal-organic framework Ag-MOFs (using silver nitrate and 1,3,5-benzentricarboxylic acid as precursors) are incorporated into PA membranes via three different methods: i) incorporation, ii) dip-coating, and iii) in situ ultrasonic techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!