A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A preliminary study of imaging paclitaxel-induced tumor apoptosis with (99)Tc(m)-His10-Annexin V. | LitMetric

Background: In tumors the process of apoptosis occurs over an interval of time after chemotherapy. It is important to determine the best time for detecting apoptosis by in vivo imaging. In this study, we evaluated the dynamics and feasibility of imaging non-small cell lung cancer (NSCLC) apoptosis induced by paclitaxel treatment using a (99)Tc(m)-labeled Annexin V recombinant with ten consecutive histidines (His10-Annexin V) in a mouse model.

Methods: (99)Tc(m)-His10-Annexin V was prepared by one step direct labeling; radio-chemical purity (RCP) and radio-stability was tested. The binding of (99)Tc(m)-His10-Annexin V to apoptotic cells was validated in vitro using camptothecin-induced Jurkat cells. In vivo bio-distribution was determined in mice by dissection. The human H460 NSCLC tumor cell line (H460) tumor-bearing mice were treated with intravenous paclitaxel 24, 48 and 72 hours later. (99)Tc(m)-His10-Annexin V was injected intravenously, and planar images were acquired at 2, 4 and 6 hours post-injection on a dual-head gamma camera fitted with a pinhole collimator. Tumor-to-normal tissue ratios (T/NT) were calculated by ROI analysis and they reflected specific binding of (99)Tc(m)-His10-Annexin V. Mice were sacrificed after imaging. Caspase-3, as the apoptosis detector, was determined by flow cytometry, and DNA fragmentation was analyzed by the terminal deoxynucleotidytransferase mediated dUTP nick-end labeling (TUNEL) assay. Nonspecific accumulation of protein was estimated using bovine serum albumin (BSA). The imaging data were correlated with TUNEL-positive nuclei and caspase-3 activity.

Results: (99)Tc(m)-His10-Annexin V had a RCP > 98% and high stability 2 hours after radio-labeling, and it could bind to apoptotic cells with high affinity. Bio-distribution of (99)Tc(m)-His10-Annexin V showed predominant uptake in kidney, relatively low uptake in myocardium, liver and gastrointestinal tract, and rapid clearance from blood and kidney was observed. The T/NT was significantly increased after paclitaxel treatment, whereas it was low in untreated tumors (T/NT = 1.43 ± 0.18). The %ID/g activity in Group 2 (24 hours), Group 3 (48 hours) and Group 4 (72 hours) after treatment was 2.55 ± 0.73, 3.35 ± 1.10, and 3.4 ± 0.96, respectively. Whereas in the non-treated group, Group 1, %ID/g was 1.10 ± 0.18. The radiotracer uptake was positively correlated to the apoptotic index (r = 0.852, P < 0.01), as well as caspase-3 activity (r = 0.816, P < 0.01).

Conclusion: This study addresses the dynamics and feasibility of imaging non-small cell lung tumor apoptosis using (99)Tc(m)- His10-Annexin V.

Download full-text PDF

Source

Publication Analysis

Top Keywords

group hours
12
tumor apoptosis
8
dynamics feasibility
8
feasibility imaging
8
imaging non-small
8
non-small cell
8
cell lung
8
paclitaxel treatment
8
binding 99tcm-his10-annexin
8
apoptotic cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!