Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the importance of consumers and this imperiled faunal group on nutrient cycling and community dynamics in aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/12-1531.1 | DOI Listing |
Water Res
February 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
J Hazard Mater
December 2024
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China. Electronic address:
Persistent organic pollutants (POPs) are easily accumulated in organisms due to its high lipophilicity. Bivalves are still one of the marine invertebrates with high species diversity despite experiencing with environmental pollution. However, studies investigating the adaptation mechanisms of bivalves towards POPs have been lacking.
View Article and Find Full Text PDFJ Exp Biol
November 2024
Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
We investigated the renal function of the brackish water clam, Ruditapes philippinarum, employing magnetic resonance imaging (MRI). The R. philippinarum kidney consists of two renal tubules, a glandular (GT) and a saccular (ST) tubule.
View Article and Find Full Text PDFEcotoxicology
December 2024
National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Chennai, India.
Biol Trace Elem Res
September 2024
Centre National de Recherche Et de Développement de La Pêche Et d'Aquaculture (CNRDPA), 11, Bd Colonel Amirouche, PO Box 67, 42415, Bou-Ismaïl, Tipaza, Algeria.
The aim of this study was to determine the levels of essential trace elements copper, zinc, manganese, and nickel in two size groups of mussels, Mytilus galloprovincialis, sampled from three sites along the Algerian coast with different levels of pollution. The results of this work are very interesting for determining the effect of mussel size on the variation of contaminant levels in environmental monitoring studies. Thirty individuals from 2 size groups, less than 4-cm and more than 4-cm shell length, were collected over 4 seasons at each site studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!