RFMirTarget: predicting human microRNA target genes with a random forest classifier.

PLoS One

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Published: April 2014

MicroRNAs are key regulators of eukaryotic gene expression whose fundamental role has already been identified in many cell pathways. The correct identification of miRNAs targets is still a major challenge in bioinformatics and has motivated the development of several computational methods to overcome inherent limitations of experimental analysis. Indeed, the best results reported so far in terms of specificity and sensitivity are associated to machine learning-based methods for microRNA-target prediction. Following this trend, in the current paper we discuss and explore a microRNA-target prediction method based on a random forest classifier, namely RFMirTarget. Despite its well-known robustness regarding general classifying tasks, to the best of our knowledge, random forest have not been deeply explored for the specific context of predicting microRNAs targets. Our framework first analyzes alignments between candidate microRNA-target pairs and extracts a set of structural, thermodynamics, alignment, seed and position-based features, upon which classification is performed. Experiments have shown that RFMirTarget outperforms several well-known classifiers with statistical significance, and that its performance is not impaired by the class imbalance problem or features correlation. Moreover, comparing it against other algorithms for microRNA target prediction using independent test data sets from TarBase and starBase, we observe a very promising performance, with higher sensitivity in relation to other methods. Finally, tests performed with RFMirTarget show the benefits of feature selection even for a classifier with embedded feature importance analysis, and the consistency between relevant features identified and important biological properties for effective microRNA-target gene alignment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724815PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070153PLOS

Publication Analysis

Top Keywords

random forest
12
microrna target
8
forest classifier
8
microrna-target prediction
8
rfmirtarget
4
rfmirtarget predicting
4
predicting human
4
human microrna
4
target genes
4
genes random
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!