Chromatin loop organization of the junb locus in mouse dendritic cells.

Nucleic Acids Res

Equipe labellisée par la Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France and Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France.

Published: October 2013

The junb gene behaves as an immediate early gene in bacterial lipopolysaccharide (LPS)-stimulated dendritic cells (DCs), where its transient transcriptional activation is necessary for the induction of inflammatory cytokines. junb is a short gene and its transcriptional activation by LPS depends on the binding of NF-κB to an enhancer located just downstream of its 3' UTR. Here, we have addressed the mechanisms underlying the transcriptional hyper-reactivity of junb. Using transfection and pharmacological assays to complement chromatin immunoprecipitation analyses addressing the localization of histones, polymerase II, negative elongation factor (NELF)-, DRB sensitivity-inducing factor (DSIF)- and Positive Transcription Factor b complexes, we demonstrate that junb is a RNA Pol II-paused gene where Pol II is loaded in the transcription start site domain but poorly active. Moreover, High salt-Recovered Sequence, chromosome conformation capture (3C)- and gene transfer experiments show that (i) junb is organized in a nuclear chromatin loop bringing into close spatial proximity the upstream promoter region and the downstream enhancer and (ii) this configuration permits immediate Pol II release on the junb body on binding of LPS-activated NF-κB to the enhancer. Thus, our work unveils a novel topological framework underlying fast junb transcriptional response in DCs. Moreover, it also points to a novel layer of complexity in the modes of action of NF-κB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799436PMC
http://dx.doi.org/10.1093/nar/gkt669DOI Listing

Publication Analysis

Top Keywords

chromatin loop
8
junb
8
dendritic cells
8
transcriptional activation
8
nf-κb enhancer
8
gene
5
loop organization
4
organization junb
4
junb locus
4
locus mouse
4

Similar Publications

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.

View Article and Find Full Text PDF

MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis.

J Cell Biol

March 2025

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.

How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!