Objective: As compared to HIV-1 infection, HIV-2 is less transmissible, disease progression is slower, and the mortality risk is lower. It has been suggested that HIV-2 infection inhibits the progression of HIV-1 in individuals dually infected by HIV-1 and HIV-2 (HIV-D). We examined whether the mortality rates in dually infected individuals differ from those in persons infected with either HIV-1 or HIV-2.
Design: We conducted a systematic review and meta-analysis.
Methods: Medline and Embase databases were searched for studies that reported the number of deaths and person-years of observation (PY) for at least two of the three HIV groups (i.e. HIV-1, HIV-2, and HIV-D). Meta-analyses were then performed with random-effects models, estimating combined mortality rate ratios (MRRs).
Results: Of the 631 identified titles, six articles were included in the meta-analysis of HIV-D-infected individuals versus HIV-mono-infected persons, and seven were included in the analysis of HIV-1-mono-infected versus HIV-2-mono-infected individuals. The overall MRR of those infected with HIV-D versus HIV-1 was 1.11 [95% confidence interval (CI) 0.95-1.30]. The overall MRR of those infected with HIV-D versus HIV-2 was 1.81 (95% CI 1.43-2.30) and the MRR of those infected with HIV-1 versus HIV-2 was 1.86 (95% CI 1.44-2.39).
Conclusion: HIV-2-mono-infected persons have a lower mortality rate than those mono-infected with HIV-1 and those with HIV-D. There is no evidence that HIV-2 delays progression to death in HIV-D-infected individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.SPC.0000432532.87841.78 | DOI Listing |
Viruses
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.
View Article and Find Full Text PDFViruses
January 2025
Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia.
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFViruses
January 2025
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!