Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production.

Bioprocess Biosyst Eng

Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.

Published: April 2014

In silico optimization of bioethanol production from lignocellulosic biomasses is investigated by combining process systems engineering approach and systems biology approach. Lignocellulosic biomass is an attractive sustainable carbon source for fermentative production of bioethanol. For enhanced ethanol production, metabolic engineering of wild-type strains-that can metabolize both hexose and pentose sugars or microbial consortia consisting of substrate-selective microbes-may be advantageous. This study presents a detailed in silico analysis of bioethanol production from glucose-xylose mixtures of various compositions by batch mono-culture and co-culture fermentation of specialized microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production, and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. Effects of ten metabolic engineering strategies that have been suggested in the literature for ethanol overproduction, have been evaluated for their efficiency in enhancing the ethanol productivity in the context of batch mono-culture and co-culture processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-013-1027-yDOI Listing

Publication Analysis

Top Keywords

bioethanol production
12
dynamic flux
8
flux balance
8
ethanol production
8
metabolic engineering
8
batch mono-culture
8
mono-culture co-culture
8
ethanol productivity
8
production
6
ethanol
5

Similar Publications

Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production.

Appl Microbiol Biotechnol

January 2025

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.

Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.

View Article and Find Full Text PDF

The upgrading of ethanol to -butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, -butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption.

View Article and Find Full Text PDF

Artificial cell-free system for the sustainable production of acetoin from bioethanol.

Bioresour Technol

January 2025

Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. Electronic address:

The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL, ScADH 50 U·mL, SpNOX 127 U·mL, and 1 mM NAD).

View Article and Find Full Text PDF

Genome-Wide Association Study and Genomic Predictions for Hydroxycinnamate Concentrations in Maize Stover.

J Agric Food Chem

January 2025

UA MBG-UVIGO, Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España.

Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.

View Article and Find Full Text PDF

Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane.

BMC Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.

Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!