Substrates, bearing axial chirality, can cyclize intra- or inter-molecularly with concomitant transfer of axial-to-central chirality to produce at least one stereocenter. In order to satisfy a strict definition of axial-to-central chirality transfer, the initial axial chirality must be lost during the cyclization process. Highly functionalized enantiopure carbocycles and heterocycles were prepared using this strategy. The transformations of configurationally stable substrates take place with high regio- and stereo-selectivity. Selected examples involving allenes, biaryls, arylamides and transient axially chiral short-lived species are discussed. Special attention is focused on the mechanistic rationale of the chirality transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cs60182j | DOI Listing |
Angew Chem Int Ed Engl
November 2024
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
We report herein a directing group-controlled, palladium-catalyzed, regio-, stereo-, and enantiospecific anti-carboxylation of unactivated, internal allenes enabled via the synergistic interplay of a rationally designed bidentate directing group, palladium catalyst, and a multifunctional acetate ligand. The corresponding trans allyl ester was obtained in excellent yields with exclusive δ-regioselectivity and anti-carboxypalladation stereocontrol. The acetate ligand of the palladium catalyst controls the regio-, stereo- and enantioselectivity in the desired transformation.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Axially chiral allenes bearing organoboron groups are highly sought-after building blocks in organic synthesis due to their potential for generating a wide range of axially and centrally chiral molecules. However, the existing methods for preparing axially chiral allenes containing boron group are primarily limited to the synthesis of allenyl boronic esters, and strategies for accessing axially chiral homoallenyl boronic esters are still scarce. Here, we report the general method for synthesizing axially chiral α-boryl-homoallenyl boronic esters through a highly regio- and stereoselective copper-mediated S2'-addition of newly prepared (diborylalkyl)copper species to chiral propargyl electrophiles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG (rac)=26.6-28.
View Article and Find Full Text PDFOrg Lett
May 2023
KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
A novel α,β-regioselective [3+2] cycloaddition reaction of arylallene with C,N-cyclic azomethine imine is reported. The axial-to-central chirality transfer phenomenon has been disclosed with chiral allenes in the reaction. The wide substrate scope, including different functional groups and natural products, reveals the generality of the methodology.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.
An efficient strategy for preventing the β-hydride elimination of alkylpalladium species by ligation of the palladium with adjacent amino-group was developed, which enabled a novel palladium-catalyzed ring-closing aminoalkylative amination of unactivated aminoenynes. The reaction is amenable to aminals, as well as aliphatic aldehydes with secondary amines, which provides straightforward access to structurally diverse exocyclic allenic amines bearing 5 to 12-membered N-heterocycles. With chiral phosphoramidite-ligated palladium complex as the catalyst, an enantioselective variant was achieved with up to 93 % ee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!