Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission.

J Biol Chem

Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086. Electronic address:

Published: September 2013

Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779755PMC
http://dx.doi.org/10.1074/jbc.M113.479873DOI Listing

Publication Analysis

Top Keywords

mid49 mid51
28
mff fis1
12
drp1 recruitment
12
mid51 independently
8
independently mff
8
drp1
8
fis1 drp1
8
mitochondrial fission
8
fis1 mff
8
mid51 targeted
8

Similar Publications

Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51.

View Article and Find Full Text PDF

[Role of mitochondrial dynamics in diabetic cardiomyopathy and regulatory mechanisms].

Sheng Li Xue Bao

February 2024

Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an 710032, China.

Cardiovascular complications are the leading cause of death in diabetic patients. Among them, diabetic cardiomyopathy (DCM) is a type of specific cardiomyopathy excluding myocardial damage caused by hypertension and coronary heart disease. It is characterized by abnormal metabolism of cardiomyocytes and gradual decline of cardiac function.

View Article and Find Full Text PDF

Novel components of the mitochondrial fission machinery, mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), have been recently described, and their potential therapeutic targets for treating cardiovascular disease have been shown, including acute myocardial infarction (AMI), anthracycline cardiomyopathy and pulmonary arterial hypertension (PAH). Here, we examined the role of MiD49 and MiD51 in atherosclerosis. MiD49/51 expression was increased in the aortic valve endothelial cells (ECs) of high-fat diet-induced atherosclerosis in ApoEmice and IL-8-induced human umbilical vein endothelial cells (HUVECs), which accelerated dynamin-related protein 1 (Drp1)-mediated mitochondrial fission.

View Article and Find Full Text PDF

The Footprints of Mitochondrial Fission and Apoptosis in Fluoride-Induced Renal Dysfunction.

Biol Trace Elem Res

September 2024

Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.

Fluoride (F) is widely distributed in the environment and poses serious health risks to humans and animals. Although a good body of literature demonstrates a close relationship between F content and renal system performance, there is no satisfactory information on the involved intracellular routes. Hence, this study used histopathology and mitochondrial fission to explore fluorine-induced nephrotoxicity further.

View Article and Find Full Text PDF

Recent study had deepened our knowledge of the mitochondrial dynamics to classify mitochondrial fission into two types. To further clarify the relationship between the two distinct fission machinery and the four major adaptors of Drp1, we propose a model of mechanism elucidating the multiple functions of phospho-Drp1 with its adaptors during cell cycle and providing in-depth insights into the molecular basis and evolutionary implications in depth. The model highlights not only the clustering characteristics of different phospho-Drp1 with respective subsets of mitochondrial pro-fission adaptors but also the correlation, crosstalk and shifting between different clustering of phosphorylated Drp1-adaptors during different key fission situations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!