Background: Resveratrol, a natural plant polyphenol, has received increasing attention because its varied bioactivities, including the inhibition of tumorigenesis, lipid modification and calorie-restriction. We aimed to investigate the effect of resveratrol on oxidative/nitrative stress in endotoxemia-associated acute lung injury.

Methods: Mice were injected with lipopolysaccharide (LPS, 5 mg/kg, ip). Resveratrol at a dose of 0.3 mg/kg was administered alone or immediately before injection of LPS. Twenty four hours later, lung tissues were collected for histopathologic examination, and determination of malondialdehyde (MDA), H2O2, reduced/oxidized glutathione (GSH/GSSG) ratio, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) and peroxynitrite production.

Results: Resveratrol treatment improves histopathological changes in the lung during endotoxemia. Increased oxidative stress in endotoxemic lung was reversed by resveratrol treatment, as evidenced by the decreases of pro-oxidant biomarker (MDA and H2O2), and the increases of anti-oxidant biomarkers (GSH/GSSG ratio, T-AOC, CAT and SOD activity). Treatment with resveratrol inhibited endotoxemia-induced iNOS expression and NO production. Moreover, peroxynitrite formation in endotoxemic lung was significantly attenuated after resveratrol treatment.

Conclusions: Resveratrol exerts protective effects against acute endotoxemia-associated lung injury. These beneficial effects may be due to both the anti-oxidant and anti-nitrative properties of resveratrol. These findings support the potential for resveratrol as a possible pharmacological agent to reduce acute lung injury resulting from oxidative/nitrative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2013.07.007DOI Listing

Publication Analysis

Top Keywords

lung injury
12
resveratrol
10
lung
8
oxidative/nitrative stress
8
acute lung
8
mda h2o2
8
gsh/gssg ratio
8
sod activity
8
nitric oxide
8
inos expression
8

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination.

Inflammation

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.

View Article and Find Full Text PDF

Evaluating the effectiveness of handheld ultrasound in primary blast lung injury: a comprehensive study.

Sci Rep

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!