In April 2012, the National Institutes of Health organized a two-day workshop entitled 'Natural Language Processing: State of the Art, Future Directions and Applications for Enhancing Clinical Decision-Making' (NLP-CDS). This report is a summary of the discussions during the second day of the workshop. Collectively, the workshop presenters and participants emphasized the need for unstructured clinical notes to be included in the decision making workflow and the need for individualized longitudinal data tracking. The workshop also discussed the need to: (1) combine evidence-based literature and patient records with machine-learning and prediction models; (2) provide trusted and reproducible clinical advice; (3) prioritize evidence and test results; and (4) engage healthcare professionals, caregivers, and patients. The overall consensus of the NLP-CDS workshop was that there are promising opportunities for NLP and CDS to deliver cognitive support for healthcare professionals, caregivers, and patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957396PMC
http://dx.doi.org/10.1136/amiajnl-2013-001896DOI Listing

Publication Analysis

Top Keywords

language processing
8
applications enhancing
8
enhancing clinical
8
decision making
8
healthcare professionals
8
professionals caregivers
8
caregivers patients
8
workshop
6
workshop natural
4
natural language
4

Similar Publications

The background for establishing and verifying a dehydration prediction model for elderly patients with post-stroke dysphagia (PSD) based on General Utility for Latent Process (GULP) is as follows: For elderly patients with PSD, GULP technology is utilized to build a dehydration prediction model. This aims to improve the accuracy of dehydration risk assessment and provide clinical intervention, thereby offering a scientific basis and enhancing patient prognosis. This research highlights the innovative application of GULP technology in constructing complex medical prediction models and addresses the special health needs of elderly stroke patients.

View Article and Find Full Text PDF

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period.

Sensors (Basel)

January 2025

Department of Architectural Engineering, Dankook University, 152 Jukjeon-ro, Yongin-si 16890, Republic of Korea.

In the construction industry, ensuring the proper installation, retention, and dismantling of temporary structures, such as jack supports, is critical to maintaining safety and project timelines. However, inconsistencies between on-site data and construction documentation remain a significant challenge. To address this, this study proposes an integrated monitoring framework that combines computer vision-based object detection and document recognition techniques.

View Article and Find Full Text PDF

Artificial intelligence (AI), particularly through advanced large language model (LLM) technologies, is reshaping coal mine safety assessment methods with its powerful cognitive capabilities. Given the dynamic, multi-source, and heterogeneous characteristics of data in typical mining scenarios, traditional manual assessment methods are limited in their information processing capacity and cost-effectiveness. This study addresses these challenges by proposing an embodied intelligent system for mine safety assessment based on multi-level large language models (LLMs) for multi-source sensor data.

View Article and Find Full Text PDF

A Review of CNN Applications in Smart Agriculture Using Multimodal Data.

Sensors (Basel)

January 2025

Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.

This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!