Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electronic laboratory
8
laboratory notebook
8
sustainable data
8
data management
8
management biomedical
8
data
5
requirement analysis
4
analysis electronic
4
notebook sustainable
4
biomedical sustainable
4

Similar Publications

Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO Electroreduction.

Small

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.

View Article and Find Full Text PDF

A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering.

Small

January 2025

Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.

Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.

View Article and Find Full Text PDF

Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.

View Article and Find Full Text PDF

Tuning the Acid Hardness Nature of Cu Catalyst for Selective Nitrate-to-Ammonia Electroreduction.

Angew Chem Int Ed Engl

January 2025

Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.

Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.

View Article and Find Full Text PDF

High-Coordination and Nb-Bridging of Bimetallic Amorphous P-Nb-W-P Clusters in Carbon Nanospheres for High-Performance Sodium-Ion Hybrid Capacitors.

Adv Sci (Weinh)

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.

Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!