Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we examine the applicability of association rules for analysing high-dimensional data concerning age-related hearing impairment (ARHI). The ARHI data of the study contain hundreds of variables concerning phenotype, genotype and environmental factors. The number of association rules produced from the data is too large for manual exploration in the raw and furthermore, the rules are overlapping. Thus, the focus of our study is to develop an approach to cluster association rules into subsets and to summarise and represent the found rule subsets for easier exploration of rules. The results show that it is possible to efficiently extract rules representing interesting environmental factor-gene or gene-gene interactions. Finding suitable parameters for the association rule mining and the possibility to post-process the mined rules is essential. The developed approach facilitates rule exploration by grouping rules with items concerning the same phenomenon to the same subset and byrevealing overlapping rules.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!