Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a prediction-based approach to determine thresholds for a medication alert in a computerized physician order entry. Traditional static thresholds can sometimes lead to physician's alert fatigue or overlook potentially excessive medication even if the doses are belowthe configured threshold. To address this problem, we applied a random forest algorithm to develop a prediction model for medication doses, and applied a boxplot to determine the thresholds based on the prediction results. An evaluation of the eight drugs most frequently causing alerts in our hospital showed that the performances of the prediction were high, except for two drugs. It was also found that using the thresholds based on the predictions would reduce the alerts to a half of those when using the static thresholds. Notably, some cases were detected only by the prediction thresholds. The significance of the thresholds should be discussed in terms of the trade-offs between gains and losses; however, our approach, which relies on physicians' collective experiences, has practical advantages.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!