Temporal dissolution of potentially toxic elements from silver smelting slag by synthetic environmental solutions.

J Environ Manage

Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, 16521 Praha 6, Czech Republic. Electronic address:

Published: November 2013

Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.07.010DOI Listing

Publication Analysis

Top Keywords

citric acid
20
pte slag
12
toxic elements
8
slag
8
slag samples
8
acid solution
8
acid characterized
8
solution
5
citric
5
acid
5

Similar Publications

Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Introduction: Peels are an abundant but still underutilized waste product in the Citrus fruit industry. They contain coumarins with antiadipogenic potential that could be promising targets in new valorization strategies for Citrus peels.

Objectives: In this study, these coumarins, that is, citropten, bergamottin, and 5-geranyloxy-7-methoxycoumarin (5G7MC), were investigated in Citrus limon peels of different commercial varieties by HPLC-DAD after extraction with ethanol and choline chloride-based natural deep eutectic solvents (NADES) as alternative extraction agents in green natural product extraction.

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

Role of zinc homeostasis in the prevention of prostate diseases.

J Trace Elem Med Biol

January 2025

Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei General Hospital, Shijiazhuang, Hebei 050051, China. Electronic address:

The prostate gland is the largest accessory sex gland in the male reproductive system, and is recognized for its elevated zinc concentration. Recently, the incidence of prostate diseases has increased, posing a significant threat to the health of men. Increasing evidence suggests that maintaining normal prostate function requires proper zinc homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!