Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to investigate the orientation of N-terminus cysteine-modified cecropin P1 (cCP1) at the polystyrene maleimide (PS-MA)/peptide phosphate buffer solution interface. The cCP1 cysteine group reacts with the maleimide group on the PS-MA surface to chemically immobilize cCP1. Previously, we found that the C-terminus cysteine-modified cecropin P1 (CP1c) molecules exhibit a multiple-orientation distribution at the PS-MA/peptide phosphate buffer solution interface, due to simultaneous physical adsorption and chemical immobilization of CP1c on the PS-MA surface. Differently, in this research, it was found that the interfacial orientation of cCP1 molecules varied from a horizontal orientation to the "tilting" orientation to the "standing up" orientation and then to the "multiple-orientation" distribution as the peptide concentration increased from 0.19 to 3.74 μM. This research shows the different interaction mechanisms between CP1c and PS-MA and between cCP1 and PS-MA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la401818kDOI Listing

Publication Analysis

Top Keywords

cysteine-modified cecropin
12
c-terminus cysteine-modified
8
ps-ma/peptide phosphate
8
phosphate buffer
8
buffer solution
8
solution interface
8
ps-ma surface
8
cp1c ps-ma
8
orientation
5
ccp1
5

Similar Publications

Biosensors using peptides or proteins chemically immobilized on surfaces have many advantages such as better sensitivity, improved stability, and longer shelf life compared to those prepared using physically adsorbed biomolecules. Chemical immobilization can better control the interfacial conformation and orientation of peptides and proteins, leading to better activity of these biomolecules. In this research, molecular dynamics (MD) simulations were employed to systematically investigate the structure and dynamics of surface-tethered antimicrobial peptide cecropin P1 (CP1) modified with a cysteine residue at the C- (CP1c) or N-terminus (cCP1).

View Article and Find Full Text PDF

Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini.

J Phys Chem B

March 2014

Department of Chemistry, ‡Department of Biophysics, and §Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.

Molecular structures such as conformation and orientation are crucial in determining the activity of peptides immobilized to solid supports. In this study, sum frequency generation (SFG) vibrational spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group.

View Article and Find Full Text PDF

Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to investigate the orientation of N-terminus cysteine-modified cecropin P1 (cCP1) at the polystyrene maleimide (PS-MA)/peptide phosphate buffer solution interface. The cCP1 cysteine group reacts with the maleimide group on the PS-MA surface to chemically immobilize cCP1. Previously, we found that the C-terminus cysteine-modified cecropin P1 (CP1c) molecules exhibit a multiple-orientation distribution at the PS-MA/peptide phosphate buffer solution interface, due to simultaneous physical adsorption and chemical immobilization of CP1c on the PS-MA surface.

View Article and Find Full Text PDF

Explicit solvent molecular dynamics (MD) simulation was carried out for the antimicrobial peptides (i) Cecropin P1 and C-terminus cysteine modified Cecropin P1 (Cecropin P1 C) in solution, (ii) Cecropin P1 and Cecropin P1 C adsorbed onto coesite -Si - O - and Si - O - H surfaces, and (iii) Cecropin P1 C tethered to coesite -Si - O - surface with either (PEO)(3) or (PEO)(6) linker. Low energy structures for Cecropin P1 and Cecropin P1 C in solution consists of two regions of high α helix probability with a sharp bend, consistent with the available structures of other antimicrobial peptides. The structure of Cecropin P1 C at low ionic strength of 0.

View Article and Find Full Text PDF

Sum frequency generation (SFG) vibrational spectroscopy has been applied to the investigation of peptide immobilization on a polymer surface as a function of time and peptide conformation. Surface immobilization of biological molecules is important in many applications such as biosensors, antimicrobial materials, biobased fuel cells, nanofabrication, and multifunctional materials. Using C-terminus-cysteine-modified cecropin P1 (CP1c) as a model, we investigated the time-dependent immobilization behavior in situ in real time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!