We formulate copper salt (copper formate/acetate/oleate) precursor inks for photonic sintering using high-intensity pulsed light (HIPL) based on the ink's light absorption ability. The inks can be developed through controllable crystal field splitting states (i.e., the ligand weights and their coordination around the metal centers). The inks' light absorption properties are extremely sensitive to the carbon chain lengths of the ligands, and the ink colors can drastically change. From the relationship between the ratios of C/Cu and the required sintering energies, it is possible to ascertain that the integral absorbance coefficients are strongly correlated with the photonic sintering behavior. These results suggest that the ink absorbance properties are the most important factors in photosintering. The wires formed by sintered copper formate complex ink via the HIPL method showed good electronic conduction, achieving a low resistivity of 5.6 × 10(-5) Ω cm. However, the resistivity of the wires increased with increasing contains carbon chain length of the inks, suggesting that large amounts of residual carbon have negative effects on both the wire's surface morphology and the electrical conductivity. We find in this study that high light absorptivity and low carbon inks would lead to a lower environmental load in future by reducing both energy usage and carbon oxide gas emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la402026r | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
Purpose: This study investigated the effects of femtosecond laser (FL) irradiation on the surface roughness and shear bond strength of high-translucency zirconia (6 mol% yttria-partially stabilized zirconia [6Y-PSZ]) and lithium disilicate (LiSiO) glass ceramics.
Methods: Fully sintered square-shaped specimens of 6Y-PSZ (7 groups; 20 specimens/group) and LiSiO (8 groups; 20 specimens/group) were surface-treated via sandblasting (50-μm alumina sand or glass beads) or FL irradiation (20- or 40-μm dot or cross-line patterns) or using Monobond Etch & Prime (Ivoclar Vivadent AG; only for LiSiO specimens). The surface roughness (arithmetic average [Sa] and developed interfacial area ratio [Sdr]) and shear bond strength after 24 h and 10,000 thermal cycles were measured and statistically analyzed.
Heliyon
December 2024
Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.
This research presents an explicit analysis of the effects of sintering temperature (T) on the structural, morphological, magnetic, and optical properties of CuMgFeO nanoferrites synthesized via the sol-gel method. To accomplish it, Cu-Mg ferrite NPs were sintered at temperatures ranging from 300 to 800 °C in increments of 100 with a constant holding duration of 5 h. Thermogravimetric analysis was used to observe the degradation of organic components and the thermally stable zone of the material.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Univ. Lille, CNRS, UMR 8523-Physique des Lasers Atomes et Molécules (PhLAM), F-59000 Lille, France.
Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). The inorganic sol contained precursors of a binary SiO-CaO or a ternary SiO-CaO-PO system.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China.
Developing high-performance Ca-based materials that can work for long-term heat transfer and storage in concentrated solar power plants is crucial to achieve the large-scale conversion of solar photon fluxes to dispatchable electricity. This work demonstrates that a series of Mn, Zr co-doped CaCO nanomaterials with the 3D ordered macroporous (3DOM) skeletons are successfully prepared by a novel strategy of templated metal salt co-precipitation. The characterization results indicate that a majority of Zr and Mn are atomically dispersed into the highly-crystallized CaCO framework, whereas a minor amount of Mn is present in the form of CaMnO nanoparticles (NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!