As multicellular organisms develop, many cells permanently stop dividing and undergo terminal differentiation. The G1 phase of the cell cycle is thought to be the critical decision point for differentiation. Many growth factors, such as epidermal growth factor, are involved in regulating the G1 to S phase transition, and aberrant activation of growth factor signaling is one of the critical causes of tumor formation. Therefore, each cell must have proper mechanisms to suppress inappropriate/excessive activation of growth factor signaling, but the underlying molecular mechanisms remain undefined. Here, we found that ebi, a Drosophila homologue of genes encoding transducin-β-like 1 and transducin-β-like 1-related protein, mitigated excess growth stimulation by taking advantage of its distinct epigenetic functions. Ebi acted as a corepressor of transcription by forming a complex with retinoblastoma family protein (RBF), a Drosophila homologue of retinoblastoma, and regulating the expression of specific target genes of the Rbf/E2F pathway. Furthermore, ebi also sustained expression of certain genes, including Rbf, encoding factors that inhibit progression out of G1. Our genetic studies suggest that the antagonistic function of ebi against the Polycomb group silencing complex plays a role in the G1/S phase transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.12088 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong. Electronic address:
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:
Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.
View Article and Find Full Text PDFAsia Pac J Ophthalmol (Phila)
January 2025
Peking Union Medical College Hospital, Beijing, China. Electronic address:
Purpose: To evaluate the efficacy, durability and safety of intravitreal faricimab versus aflibercept over 48 weeks in patients with neovascular age-related macular degeneration (nAMD) from the LUCERNE China subpopulation.
Design: LUCERNE (NCT03823300) was a phase 3 global, double-masked, active comparator-controlled trial. The China subpopulation comprised patients from mainland China, Taiwan and Hong Kong.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!