Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751496 | PMC |
http://dx.doi.org/10.1186/1556-276X-8-346 | DOI Listing |
Acc Chem Res
January 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India.
We reported, herein, the fabrication of a Cu(II) Schiff base metal complex, immobilized on chitosan surface coated on NiFeO MNPs, intended as a novel heterogeneous and magnetically recyclable nanocatalyst, NiFeO@CS@CuSB. The synthesis process starts with the preparation of NiFeO MNPs followed by coating with chitosan and then subsequent immobilization of the Cu(II) Schiff base metal complex on its surface. Through comprehensive characterization of the prepared nanocatalyst using FT-IR, PXRD, SEM, EDS, TEM, SAED, VSM, BET, XPS, and ICP-AES, the structure, surface morphology, elemental composition, and characteristics of the catalyst are revealed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (AgCu) catalyst integrated with alkynylferrocene molecules (AgCu-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO electroreduction.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China. Electronic address:
Designing and inventing synergistic emerging antimicrobial strategies is critical for mitigating potential resistance to conventional antibiotics. This task is challenging because these antimicrobial agents should need to eliminate bacteria, slow oxidative stress in wounds, and be safe and nontoxic. Here, we report a highly safe antimicrobial nanocatalyst for bacterial scavenging through aptamer-synergistic multienzyme activity.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea.
We reported the gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized with β-cyclodextrin (β-CD) as versatile nano-agents demonstrated for human urine-based biosensing of cysteamine and catalytic conversion from nitrobenzene (NB) to aniline. First, the hybrid bimetallic nanoparticles, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!