The Deepwater Horizon oil spill is unparalleled among environmental hydrocarbon releases, because of the tremendous volume of oil, the additional contamination by dispersant, and the oceanic depth at which this release occurred. Here, we present data on general toxicity and mutagenicity of upper water column waters and, to a lesser degree, sediment porewater of the Northeastern Gulf of Mexico (NEGOM) and west Florida shelf (WFS) at the time of the Deepwater Horizon oil spill in 2010 and thereafter. During a research cruise in August 2010, analysis of water collected in the NEGOM indicated that samples of 3 of 14 (21%) stations were toxic to bacteria based on the Microtox assay, 4 of 13 (34%) were toxic to phytoplankton via the QwikLite assay, and 6 of 14 (43%) showed DNA damaging activity using the λ-Microscreen Prophage induction assay. The Microtox and Microscreen assays indicated that the degree of toxicity was correlated to total petroleum hydrocarbon concentration. Long-term monitoring of stations on the NEGOM and the WFS was undertaken by 8 and 6 cruises to these areas, respectively. Microtox toxicity was nearly totally absent by December 2010 in the Northeastern Gulf of Mexico (3 of 8 cruises with one positive station). In contrast, QwikLite toxicity assay yielded positives at each cruise, often at multiple stations or depths, indicating the greater sensitivity of the QwikLite assay to environmental factors. The Microscreen mutagenicity assays indicated that certain water column samples overlying the WFS were mutagenic at least 1.5 years after capping the Macondo well. Similarly, sediment porewater samples taken from 1000, 1200, and 1400 m from the slope off the WFS in June 2011 were also highly genotoxic. Our observations are consistent with a portion of the dispersed oil from the Macondo well area advecting to the southeast and upwelling onto the WFS, although other explanations exist. Organisms in contact with these waters might experience DNA damage that could lead to mutation and heritable alterations to the community pangenome. Such mutagenic interactions might not become apparent in higher organisms for years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es401761h | DOI Listing |
World J Mens Health
January 2025
Global Andrology Forum, Moreland Hills, OH, USA.
Purpose: This study investigated 1) the frequency of quotation errors in multi-authored medical manuscripts in andrology, 2) analyzed common types of quotation errors and the methods used to rectify them, and 3) evaluated their impact on manuscript accuracy, credibility, and research conclusions.
Materials And Methods: Twelve manuscripts written by the Global Andrology Forum (GAF) members between 2023 and 2024 were randomly selected for this study. The manuscripts and "Quotation Verification Sheets" were analyzed by senior GAF researchers to detect the number and types of quotation errors.
A species' distribution depends on its tolerance to environmental conditions. These conditions are defined by a minimum, maximum, and optimal ranges of single and combined factors. Forays into environmental conditions outside the minimum or maximum tolerance of a species (i.
View Article and Find Full Text PDFISME Commun
January 2025
Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.
Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms.
View Article and Find Full Text PDFEcotoxicology
January 2025
Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México.
Monitoring the dynamics of contaminants in ecosystems helps understand their potential effects. Seabirds have been used as biomonitors of marine ecosystems for this purpose. However, exposure and vulnerability to pollutants are understudied in tropical species, and the relationships between various pollutants and the trophic ecology of seabirds are poorly understood.
View Article and Find Full Text PDFJ Environ Qual
January 2025
USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA.
The Eastern Corn Belt (ECB) node of the Long-Term Agroecosystem Research (LTAR) network is representative of row crop agricultural production systems in the poorly drained, humid regions of the US Midwest and a significant focus for addressing water quantity and quality concerns affecting Lake Erie and the Gulf of Mexico. The objectives of this paper were to (1) present relevant background information and collection methodology, (2) provide summary analyses of measured data, and (3) provide details for accessing the dataset and discuss potential database applications. The ECB-water quality (ECB-WQ) database is comprised of hydrology and water quality data from three privately owned farms in Northwest Ohio and Northeast Indiana and is available for download through the United States Department of Agriculture Ag Data Commons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!