The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e., survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors, leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular, a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g., quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast, differentiated cell types (e.g., dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together, these results provide the "proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761568 | PMC |
http://dx.doi.org/10.1073/pnas.1303669110 | DOI Listing |
Cell Rep
January 2025
Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands. Electronic address:
Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.
Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases.
View Article and Find Full Text PDFNeurol Int
January 2025
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!