Expression of short hairpin RNAs (shRNAs) by the RNA polymerase type III U6 promoter is an effective and widely used strategy for RNA interference (RNAi) which is a sequence-specific gene silencing mechanism. The U6 promoters from human, mouse, and swine were cloned, respectively for constructing various shRNA expression vectors. The transcription efficiency of each U6 promoter was analyzed for its activity to drive expression of shRNA targeting enhanced green fluorescent protein (EGFP) mRNA in different mammalian cells. All three U6 promoters were functional and the swine U6 promoter demonstrated the most efficient knockdown of EGFP synthesis in all these three species of cell lines including porcine kidney (PK-15), human embryonic kidney (HEK293T), and mouse fibroblast (LM) cells. Furthermore, the antiviral effect of shRNA targeting the classical swine fever virus (CSFV) NS5B driven by the swine U6 promoter was confirmed by the significant reduction of virus replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2013.07.009 | DOI Listing |
Genomics
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology of Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, 8 huanjin Road, Yazhou District, Sanya, City, Hainan Province 572024, China. Electronic address:
Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs.
View Article and Find Full Text PDFBMC Vet Res
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
Streptococcus suis (S. suis) is a major pathogen in swine and poses a potential zoonotic threat, which may cause serious diseases. Many toxin-antitoxin (TA) systems have been discovered in S.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:
Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!