Polyethylene glycol-drug ester conjugates for prolonged retention of small inhaled drugs in the lung.

J Control Release

Centre for Doctoral Training in Targeted Therapeutics and Formulation Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Published: October 2013

Typically, inhaled drugs are rapidly absorbed into the bloodstream, which results in systemic side effects and a brief residence time in the lungs. PEGylation was evaluated as a novel strategy for prolonging the retention of small inhaled molecules in the pulmonary tissue. Hydrolysable ester conjugates of PEG₁₀₀₀, PEG₂₀₀₀, ₂₀₀₀, PEG₃₄₀₀ and prednisolone, a model drug cleared from the lungs within a few minutes, were synthesised and thoroughly characterised. The conjugates were stable in buffers with hydrolysis half-lives ranging from 1h to 70 h, depending on the pH and level of substitution. With the exception of PEG₃₄₀₀-prednisolone, conjugates did not induce a significant lactate dehydrogenase (LDH) release from Calu-3 cells after a 20 h exposure. Following nebulisation to isolated perfused rat lungs (IPRL), the PEG₂₀₀₀ and mPEG₂₀₀₀ conjugates reduced the maximum prednisolone concentration in the perfusate (Cmax) by 3.0 and 2.2 fold, respectively. Moreover, while prednisolone was undetectable in the perfusion solution beyond 20 min when the free drug was administered, prednisolone concentrations were still quantifiable after 40 min following delivery of the conjugates. This study is the first to demonstrate hydrolysable PEG drug ester conjugates are a promising approach for optimising the pharmacokinetic profile of small drugs delivered by inhalation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2013.07.023DOI Listing

Publication Analysis

Top Keywords

ester conjugates
12
retention small
8
small inhaled
8
inhaled drugs
8
conjugates
7
polyethylene glycol-drug
4
glycol-drug ester
4
conjugates prolonged
4
prolonged retention
4
drugs lung
4

Similar Publications

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!