DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722815 | PMC |
http://dx.doi.org/10.1016/j.bbagrm.2013.07.006 | DOI Listing |
Biochim Biophys Acta
October 2013
Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Spain, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (i+12), Madrid, Spain. Electronic address:
DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions.
View Article and Find Full Text PDFPLoS One
February 2013
Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red en Enfermedades Raras, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
The human gene C10orf2 encodes the mitochondrial replicative DNA helicase Twinkle, mutations of which are responsible for a significant fraction of cases of autosomal dominant progressive external ophthalmoplegia (adPEO), a human mitochondrial disease caused by defects in intergenomic communication. We report the analysis of orthologous mutations in the Drosophila melanogaster mitochondrial DNA (mtDNA) helicase gene, d-mtDNA helicase. Increased expression of wild type d-mtDNA helicase using the UAS-GAL4 system leads to an increase in mtDNA copy number throughout adult life without any noteworthy phenotype, whereas overexpression of d-mtDNA helicase containing the K388A mutation in the helicase active site results in a severe depletion of mtDNA and a lethal phenotype.
View Article and Find Full Text PDFJ Biol Chem
March 2007
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824. Electronic address:
We report the cloning and molecular analysis of Drosophila mitochondrial DNA helicase (d-mtDNA helicase) homologous to human TWINKLE, which encodes one of the genes responsible for autosomal dominant progressive external ophthalmoplegia. An RNA interference construct was designed that reduces expression of d-mtDNA helicase to an undetectable level in Schneider cells. RNA interference knockdown of d-mtDNA helicase decreases the copy number of mitochondrial DNA (mtDNA) approximately 5-fold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!