Biomechanical comparison of two paraplegic gait patterns.

Clin Biomech (Bristol)

Cumberland College of Health Sciences, Lidcombe, New South Wales, Australia.

Published: May 1990

A study is presented comparing the kinetic and kinematic characteristics of two gait patterns in common use by paraplegics. Data were collected using a combined kinetic and kinematic process from a total of 14 subjects with lesion of the spinal cord. Significant differences were derived for gait velocity and for the axial load transmission by the walking aids in both gaits. The cumulative effect of load transmission on the upper limb joints did not display clear differences between gaits. Load and moment impulse values over a given test distance were consistently greater using a swing-to gait than a swing-through gait, although the differences were not always statistically significant. It is suggested that closer consideration of the biomechanical demands of aided gait should be undertaken prior to the selection and training of paraplegic gait patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0268-0033(90)90044-7DOI Listing

Publication Analysis

Top Keywords

gait patterns
12
paraplegic gait
8
kinetic kinematic
8
load transmission
8
gait
7
biomechanical comparison
4
comparison paraplegic
4
patterns study
4
study presented
4
presented comparing
4

Similar Publications

Acute effects of voluntary breathing patterns on postural control during walking.

Hum Mov Sci

January 2025

Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:

Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).

View Article and Find Full Text PDF

Background: Falls on stairs are a major cause of severe injuries among older adults, with stair descent posing significantly greater risks than ascent. Variations in stair descent phenotypes may reflect differences in physical function and biomechanical stability, and their identification may prevent falls.

Aims: This study aims to classify stair descent phenotypes in older adults and investigate the biomechanical and physical functional differences between these phenotypes using hierarchical cluster analysis.

View Article and Find Full Text PDF

: This study evaluated changes in selected spatiotemporal and kinematic gait parameters and balance in girls with Adolescent idiopathic scoliosis (AIS) with and without the Chêneau brace. : 15 subjects with scoliosis wearing the Chêneau brace and an equal comparative control group underwent objective gait analysis with the 3D BTS motion caption system. Balance assessment was done with the Kistler platform.

View Article and Find Full Text PDF

Impact of muscle fatigue on anticipatory postural adjustments during gait initiation.

Front Physiol

January 2025

Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.

Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.

View Article and Find Full Text PDF

Restoration of independent walking ability is the primary objective of stroke rehabilitation; however, not all patients achieve this goal due to diverse impairments in the paretic lower limb and compensatory mechanisms that lead to an asymmetrical and mechanically inefficient gait. This investigation aimed to examine alterations in cortical activation in post-stroke patients while walking with a wearable two-channel functional electrical stimulation (FES) in comparison to walking without FES. This observational study was conducted to discern distinct activation patterns in 19 stroke patients during sessions with and without FES, while using functional near-infrared spectroscopy (fNIRS) to monitor changes in blood oxygen levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!