Neurotoxic organophosphorus compounds (OPs), which are used as pesticides and chemical warfare agents lead to more than 700,000 intoxications worldwide every year. The main target of OPs is the inhibition of acetylcholinesterase (AChE), an enzyme necessary for the control of the neurotransmitter acetylcholine (ACh). The control of ACh function is performed by its hydrolysis with AChE, a process that can be completely interrupted by inhibition of the enzyme by phosphylation with OPs. Compounds used for reactivation of the phosphylated AChE are cationic oximes, which usually possess low membrane and hematoencephalic barrier permeation. Neutral oximes possess a better capacity for hematoencephalic barrier permeation. NMR spectroscopy is a very confident method for monitoring the inhibition and reactivation of enzymes, different from the Ellman test, which is the common method for evaluation of inhibition and reactivation of AChE. In this work (1)H NMR was used to test the effect of neutral oximes on inhibition of AChE and reactivation of AChE inhibited with ethyl-paraoxon. The results confirmed that NMR is a very efficient method for monitoring the action of AChE, showing that neutral oximes, which display a significant AChE inhibition activity, are potential drugs for Alzheimer disease. The NMR method showed that a neutral oxime, previously indicated by the Ellman test as better in vitro reactivator of AChE inhibited with paraoxon than pralidoxime (2-PAM), was much less efficient than 2-PAM, confirming that NMR is a better method than the Ellman test.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2013.05.063DOI Listing

Publication Analysis

Top Keywords

neutral oximes
16
inhibition reactivation
12
ellman test
12
ache
9
oximes possess
8
hematoencephalic barrier
8
barrier permeation
8
method monitoring
8
reactivation ache
8
ache inhibited
8

Similar Publications

Pure silica ITH zeolite is normally synthesized under neutral or acidic conditions in the presence of HF, but it is challenging for synthesis of this zeolite under alkaline conditions. In this work, it is successful for alkaline synthesis of pure silica ITH in the absence of HF using a designed organic template containing F species, showing that the sample obtained has high crystallinity associated with ITH structure, nanosheet morphology, and rich silanol nests. Very importantly, this ITH zeolite exhibited better performance in vapor phase Beckmann rearrangement of cyclohexanone oxime than that of Silicalite-1 zeolite, one of the best catalysts for this reaction.

View Article and Find Full Text PDF

Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu-Mo Dual-Site Catalyst.

J Am Chem Soc

October 2024

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NHOH intermediate from NitRR under large current densities is challenging. We here report a CuMoO/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NHOH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.

View Article and Find Full Text PDF

Synthesis of linear chitosan-block-dextran copolysaccharides with dihydrazide and dioxyamine linkers.

Carbohydr Polym

December 2024

Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, 33600 Pessac, France. Electronic address:

Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. Under non-reducing conditions, chitosan with a 2,5-anhydro-D-mannose unit at its reducing end exhibited high reactivity with both PDHA and ADH.

View Article and Find Full Text PDF

In situ Generation of Cyclohexanone Drives Electrocatalytic Upgrading of Phenol to Nylon-6 Precursor.

Angew Chem Int Ed Engl

November 2024

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Coupling in situ generated intermediates with other substrates/intermediates is a viable approach for diversifying product outcomes of catalytic reactions involving two or multiple reactants. Cyclohexanone oxime is a key precursor for caprolactam synthesis (the monomer of Nylon-6), yet its current production uses unsustainable carbon sources, noble metal catalysts, and harsh conditions. Herein, we report the first work to synthesize cyclohexanone oxime through electroreduction of phenol and hydroxylamine.

View Article and Find Full Text PDF

Palladium(0) and Brønsted Acid Co-Catalyzed Enantioselective Hydro-Cyclization of 2,4-Dienyl Hydrazones and Oximes.

Angew Chem Int Ed Engl

October 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.

The transition metal-catalyzed asymmetric hydro-functionalization of 1,3-dienes has been well explored, but most reactions focus on electron-neutral substrates in an intermolecular manner. Here we first demonstrate that readily available 2,4-dienyl hydrazones and oximes can be efficiently utilized in the hydro-cyclization reaction under co-catalysis of a Brønsted acid and a chiral palladium complex, furnishing multifunctional dihydropyrazones and dihydroisoxazoles, respectively. Diverse substitution patterns for both types of electron-deficient diene compounds are tolerated, and corresponding heterocycles were generally constructed with moderate to excellent enantioselectivity, which can be elaborated to access products with higher molecular complexity and diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!