The terrestrial mammalian fauna of the North Japanese island, Hokkaido, is more similar to that of Southern Siberia than to the main island of Japan, Honshu. Three species of the genus Myodes (Muridae, Rodentia) are found on Hokkaido, but not on Honshu. While Myodes rufocanus and M. rutilus are widely distributed across Hokkaido as well as the Eurasian continent, M. rex, which is endemic to Hokkaido and its adjacent islands, shows a discontinuous distribution pattern. We analyzed the phylogeographic history of M. rex using the mitochondrial DNA control region in order to interpret their discontinuous distribution pattern. Phylogenetic relationships among 54 distinct haplotypes showed that M. rex can be divided into four clades that occur on the northern, central, and southern regions of the Hokkaido mainland and on Rishiri Island, respectively. The phylogroups in the northern and central regions were largely separated in space, although several areas of sympatry were found. The phylogroup in the southern region, which was clearly separated from other phylogroups, showed markedly low genetic variability. All analyzed individuals from the population on Rishiri belonged to a separate lineage. Across a range of divergence rate estimates, we dated the basal divergence of all phylogroups to the mid to late Pleistocene, with subsequent signals of population expansion within lineages. We conclude that current phylogeographic structure in M. rex likely reflects Pleistocene survival in several separate refugia in situ. Past glacial ages have thus played an important role in shaping the current distribution patterns of mammalian species on Hokkaido.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zsj.30.642DOI Listing

Publication Analysis

Top Keywords

discontinuous distribution
12
glacial ages
8
distribution patterns
8
distribution pattern
8
northern central
8
hokkaido
7
rex
5
refugia glacial
4
ages led
4
led current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!