An array of 180 nm diameter gold nanoparticles (NPs) embedded in a thin vanadium dioxide film was used as a nanoscale probe of the thermochromic semiconductor-to-metal transition (SMT) in the VO2. The observed 30% reduction in plasmon dephasing time resulted from the interaction between the localized surface plasmon resonance of the NPs with the 1.4 eV electronic transitions in VO2. The NPs act as nanoantennas probing the SMT; homogeneous broadening of the gold plasmon resonance is observed at the temperatures where electron correlations are strongest in VO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl401823r | DOI Listing |
Sci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:
Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, People's Republic of China.
The recently emerged remote epitaxy technique, utilizing 2D materials (mostly graphene) as interlayers between the epilayer and the substrate, enables the exfoliation of crystalline nanomembranes from the substrate, expanding the range of potential device applications. However, remote epitaxy has been so far applied to a limited range of material systems, owing to the need of stringent growth conditions to avoid graphene damaging, and has therefore remained challenging for the synthesis of oxide nanomembranes. Here, we demonstrate the remote epitaxial growth of an oxide nanomembrane (vanadium dioxide, VO) with a sub-nanometer thick amorphous interlayer, which can withstand potential sputtering-induced damage and oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!