Energy-resolved collision-induced dissociation (CID) of seven silver cation-ligand complexes, Ag(+)(L), with Xe is studied using guided ion beam tandem mass spectrometry techniques. The ligands, L, investigated are monomeric building blocks of polyethers and polyphenols including phenol, 2-hydroxyphenol, 3-hydroxyphenol, 4-hydroxyphenol, 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, and 4-hydroxymethyl phenol. In all cases, Ag(+) is observed as the primary CID product, corresponding to endothermic loss of the intact neutral ligand. The kinetic-energy-dependent cross sections for CID of these Ag(+)(L) complexes are analyzed using an empirical threshold law to extract absolute 0 and 298 K Ag(+)-L bond dissociation energies (BDEs). Density functional theory calculations at the B3LYP/6-31G* level of theory are used to determine the structures of the neutral ligands and their complexes to Ag(+) using either the Stuttgart RSC 1997 valence basis set and effective core potential (SRSC ECP) or DZVP-DFT to describe Ag(+). Theoretical BDEs are determined at the B3LYP/6-311+G(2d,2p) level of theory again using the SRSC ECP or DZVP-DFT for Ag(+). For all systems, the most stable binding conformations found involve cation-π interactions when the SRSC ECP is used to describe Ag(+). When DZVP-DFT is employed, the most stable binding geometries remain cation-π complexes except for the complex to 2HP, where the ground-state conformer involves bidentate binding of Ag(+) to the hydroxyl oxygen atoms of both substituents. The agreement between the measured and calculated BDEs is excellent with a MAD of 2.9 ± 1.7 kJ/mol when the SRSC ECP is used to describe Ag(+) and less satisfactory for DZVP-DFT, which underestimates the strength of binding in these systems by ~14% or 26.0 ± 6.7 kJ/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp402224tDOI Listing

Publication Analysis

Top Keywords

srsc ecp
16
describe ag+
12
monomeric building
8
building blocks
8
blocks polyethers
8
polyethers polyphenols
8
guided ion
8
ion beam
8
beam tandem
8
tandem mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!