Timescales of learning in the basal ganglia and the hippocampus.

Front Behav Neurosci

Neurobehavioral Laboratory, Department of Behavior Analysis, University of North Texas Denton, TX, USA.

Published: August 2013

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729978PMC
http://dx.doi.org/10.3389/fnbeh.2013.00098DOI Listing

Publication Analysis

Top Keywords

timescales learning
4
learning basal
4
basal ganglia
4
ganglia hippocampus
4
timescales
1
basal
1
ganglia
1
hippocampus
1

Similar Publications

Pervasive glacier retreats across Svalbard from 1985 to 2023.

Nat Commun

January 2025

Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.

A major uncertainty in predicting the behaviour of marine-terminating glaciers is ice dynamics driven by non-linear calving front retreat, which is poorly understood and modelled. Using 124919 calving front positions for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, generated with deep learning, we identify pervasive calving front retreats for non-surging glaciers over the past 38 years. We observe widespread seasonal cycles in calving front position for over half of the glaciers.

View Article and Find Full Text PDF

Objective: Acute experimental models of antidepressant placebo effects suggest that expectancies, encoded within the salience network (SN), are reinforced by sensory evidence and mood fluctuations. However, whether these dynamics extend to longer timescales remains unknown. To answer this question, we investigated how SN and default mode network (DMN) functional connectivity during the processing of antidepressant expectancies facilitates the shift from salience attribution to contextual cues in the SN to belief-induced mood responses in the DMN, both acutely and long-term.

View Article and Find Full Text PDF

Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability.

View Article and Find Full Text PDF

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

A spatial code for temporal information is necessary for efficient sensory learning.

Sci Adv

January 2025

Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, F-75012 Paris, France.

The temporal structure of sensory inputs contains essential information for their interpretation. Sensory cortex represents these temporal cues through two codes: the temporal sequences of neuronal activity and the spatial patterns of neuronal firing rate. However, it is unknown which of these coexisting codes causally drives sensory decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!