Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728478PMC
http://dx.doi.org/10.3389/fnbeh.2013.00093DOI Listing

Publication Analysis

Top Keywords

endogenous opioid
8
opioid system
8
ethanol
8
opioid peptides
8
effects ethanol
8
release β-endorphin
8
opioid
5
acetaldehyde
5
involvement endogenous
4
system psychopharmacological
4

Similar Publications

Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with AN and thirteen healthy controls (HC) were included in this study.

View Article and Find Full Text PDF

The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.

View Article and Find Full Text PDF

Aim: We aimed to create a rat model of drug-induced parkinsonism and tardive dyskinesia by chronic administration of haloperidol and examine the expression of direct and indirect pathway markers in the striatum of the model rats.

Methods: We treated 21 rats, 14 with haloperidol decanoate and 7 with placebo. The number of vacuous chewing movements per 2 min was counted, and haloperidol-treated rats were classified into two groups: mild and severe tardive dyskinesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!