This study investigated the change of CH4 production and methanogenic community in response to the presence of humic substances (humics) analogue, anthraquinone-2,6-disulfonate (AQDS). Anaerobic experiments used a Chinese paddy soil, and three concentration levels of 0.5, 5, and 20 mM AQDS were conducted. Results suggested that the effect of AQDS on methanogenesis was time-dependent and concentration-dependent. Twenty millimolars of AQDS was toxic for methanogenic activity almost for the entire experimental period. Slight inhibition of methanogenesis by AQDS respiration in the 0.5- and 5-mM AQDS-supplemented treatments occurred within the early period, while CH4 accumulated throughout the later period was approximately five and ten times greater than that of the controls without AQDS, respectively. AQDS reduction coupling to acetate oxidization enriched Geobacter species, and the mcrA-targeted T-RFLP profiles revealed significant increase of Methanosarcina at the expense of Methanobacterium in the 0.5- and 5-mM AQDS treatments. The enriched syntrophic association between Geobacter and Methanosarcina was deduced to be an effective methanogenic pathway for converting acetate to CH4 via direct interspecies electron transfer. This study implied the ecological importance of syntrophic interaction between methanogens and microorganisms enriched by anaerobic respiration of non-methanogenic terminal electron acceptors in paddy soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-013-0271-7 | DOI Listing |
Environ Microbiol
January 2025
Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China.
Anaerobic digestion (AD) of organic wastes relies on the interaction and cooperation of various microorganisms. Phages are crucial components of the microbial community in AD systems, but their diversity and interactions with the prokaryotic populations are still inadequately comprehended. In this study, 2121 viral operational taxonomic units (vOTUs) were recovered from 12 anaerobic fatty acid-fed reactors.
View Article and Find Full Text PDFWater Res X
May 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China. Electronic address:
The treatment of landfill leachate using anaerobic membrane bioreactors (AnMBRs) often faces challenges such as poor removal efficiency, low methane yield and membrane fouling. This study applied AnMBRs with incrementally adding conductive materials to enhance the treatment of landfill leachate under high organic loading rates(35 kg COD/(m∙d)). With 50 g/L activated carbon, COD removal percentages and methane yield increased to 81.
View Article and Find Full Text PDFMicroorganisms
January 2025
Indian Council of Agricultural Research, New Delhi 110001, India.
A series of in vitro studies were conducted to explore the anti-methanogenic potential of five seaweeds collected from the Indian sea and to optimize the level(s) of incorporation of the most promising seaweed(s) into a straw and concentrate diet to achieve a significant reduction in methane (CH) production without disturbing rumen fermentation characteristics. A chemical composition analysis revealed a notable ash content varying between 55 and 70% in seaweeds. The crude protein content was highly variable and ranged between 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!