Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation.

Appl Biochem Biotechnol

Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan.

Published: October 2013

The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells), as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both cells resulted in increased activities of α2→3/6 sialyltransferases as demonstrated by solid phase assay using lectin binding. However, a very strong Maackia amurensis agglutinin I (MAL-I) staining on the membrane of sialic acid-treated T47D cells was observed, indicating an increase of Neu5Acα2→3Gal on the cell surface. To our knowledge, this is a first report showing the utility of lectins, particularly MAL-I, as a means to discriminate between normal and cancer cells after sialic acid treatment under nutrient deprivation. This method is sensitive and allows selective detection of glycan sialylation on a cancer cell surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813469PMC
http://dx.doi.org/10.1007/s12010-013-0409-6DOI Listing

Publication Analysis

Top Keywords

sialic acid
20
cancer cells
12
acid treatment
12
nutrient deprivation
12
cell surface
12
lectin binding
8
cells sialic
8
treatment nutrient
8
cells
6
sialic
6

Similar Publications

Zoonotic transmission of avian influenza viruses into mammals is relatively rare due to anatomical differences in the respiratory tract between species. Recently, clade 2.3.

View Article and Find Full Text PDF

Metalloparticle-Engineered Pickering Emulsion Displaying AAV-Vectored Vaccine for Enhancing Antigen Expression and Immunogenicity Against Pathogens.

Adv Mater

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.

Recombinant adeno-associated viruses (rAAVs) have emerged as promising vaccine vectors due to their enduring efficacy with a single dose. However, insufficient cellular immune responses and the random and non-specific distribution of AAVs post-injection may hinder the development of AAV vaccines. Here, a novel Pickering emulsion platform stabilized by biomineralized manganese nanoparticles and aluminum hydroxide, which can rapidly and efficiently load AAVs, is reported.

View Article and Find Full Text PDF

Relevance of superoxide dismutase type 1 to lipoid pneumonia: the first retrospective case-control study.

Respir Res

January 2025

National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P. R. China.

Background: Lipoid pneumonia (LP) is a rare disease caused by the accumulation of lipids and lipid-laden macrophages in the alveoli inducing damage. LP is difficult to differentiate from other similar diseases without pathological evidence, such as upper respiratory tract infection (URTI), pneumonia, cryptogenic organizing pneumonia (COP), pulmonary alveolar proteinosis (PAP), lung mucinous adenocarcinoma and pulmonary edema. Given the high misdiagnosis rate and limited statistical clinical and treatment data, there is an urgent need for novel indicators of LP.

View Article and Find Full Text PDF

A nanobody-enzyme fusion protein targeting PD-L1 and sialic acid exerts anti-tumor effects by C-type lectin pathway-mediated tumor associated macrophages repolarizing.

Int J Biol Macromol

January 2025

Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China; Translational Glycomics Research Center, Fudan Zhangjiang Institute, Shanghai, China. Electronic address:

Aberrant sialylated glycosylation in the tumor microenvironment is a novel immune suppression pathway, which has garnered significant attention as a targetable glycoimmune checkpoint for cancer immunotherapy to address the dilemma of existing therapies. However, rational drug design and in-depth mechanistic studies are urgently required for tumor sialic acid to become valuable glycoimmune targets. In this study, we explored the positive correlation of PD-L1 and sialyltransferase expression in clinical colorectal cancer tissues and identified their mutual regulation effects in macrophages.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).

Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!