We demonstrate the ability to increase the amount of eicosapentaenoic acid (EPA, 20:5n-3) in mammalian cells using OPIN17 desaturase gene. This gene was codon optimized based on genomic sequence of Δ17 from Phytophthora infestans and introduced into Chinese hamster ovary cells using liposome-mediated transfection protocol. Reverse transcription polymerase chain reaction was utilized to evaluate co-expression of AcGFP1 and OPIN17. Our results indicate that the OPIN17 gene can be expressed in mammalian cells. Heterologous expression of this gene was evaluated by assessing the fatty acid content of OPIN17-transfected cells. A total cellular lipid analysis of transfected cells which were fed with arachidonic acid (AA, 20:4n-6) as a substrate resulted in an 86.5-246 % (p < 0.05) increase in the amount of EPA in transfected cells compared with that in control cells. The ratio of AA to EPA was reduced from approximately 4.07:1 in control cells to 2.2:1 in transfected cells (p < 0.05), which indicates an EPA percent conversion of 30.94 %. Our study demonstrates that the codon-optimized OPIN17 gene can be functionally expressed in mammalian cells, converting AA into EPA and elevating the level of ω-3 polyunsaturated fatty acids efficiently. These results provide an additional support for the use of this gene in generating transgenic livestock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0332-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!