Mammalian cochlear supporting cells remain quiescent at postnatal ages and age-dependent changes in supporting cell proliferative capacity are evident. Ectopic Atoh1 expression in neonatal supporting cells converts only a small percentage of these cells into hair cell-like cells. Despite tremendous potential for therapeutics, cellular reprogramming in the mammalian inner ear remains a slow inefficient process that requires weeks, with most cells failing to reprogram. Cellular reprogramming studies in other tissues have shown that epigenetic inhibitors can significantly improve reprogramming efficiency. Very little is known about epigenetic regulation in the mammalian inner ear, and almost nothing is known about the histone modifications. Histone modifications are vital for proper transcriptional regulation, and aberrant histone modifications can cause defects in the regulation of genes required for normal tissue development and maintenance. Our data indicate that cofactors of repressive complexes such as NuRD and PRC2 are present in the neonatal organ of Corti. These NuRD cofactors are present throughout most of the organ of Corti from E18.5 until P4. By P6, these NuRD cofactors are mostly undetectable by immunofluorescence and completely lost by P7, but are detectable again at P8 and continue to be present through P21. The PRC2 enzymatic subunit, EZH2 is also highly present from E18.5 to P0 in the organ of Corti, but lost between P2 and P4. However, EZH2 staining is evident again throughout the organ of Corti by P6 and persists through P21. Our data provide evidence that HDACs, DNA methyltransferases, histone methyltransferases, and histone demethylases are expressed postnatally within the organ of Corti, and may be targets for drug inhibition to increase the capacity, speed, and efficiency of reprogramming a supporting cell into a hair cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784354 | PMC |
http://dx.doi.org/10.1016/j.heares.2013.07.017 | DOI Listing |
Bio Protoc
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.
View Article and Find Full Text PDFHear Res
January 2025
Columbia University Irving Medical Center, Department of Otolaryngology, Head and Neck Surgery, 180 Fort Washington Ave, New York, 10032, NY, USA; Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Ave, New York, 10027, NY, USA.
Sound-evoked displacement responses at the outer hair cell-Deiters' cell junction (OHC-DC) are of significant interest in cochlear mechanics, as OHCs are believed to be in part responsible for active tuning enhancement and amplification. Motion in the cochlea is three-dimensional, and the architecture of the organ of Corti complex (OCC) suggests the presence and mechanical importance of all three components of motion. Optical coherence tomography (OCT) displacement measurements of OHC-DC motion from different experimental preparations often show disparate results, potentially due to OCT measuring only the motion component along the beam axis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Molecules
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Cisplatin is an effective anti-cancer drug with limited clinical applications due to ototoxicity. Resveratrol, known for its antioxidant and anti-inflammatory properties, has been reported to mitigate these adverse effects, although the underlying mechanism remains under-researched.
Objective: This study aimed to investigate the effects and underlying mechanisms of resveratrol on cisplatin-induced ototoxicity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!